Ambient Ozone and Fine Particular Matter Pollution in a Megacity in South China: Trends, Concurrent Pollution, and Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Analytical Methods
2.2.1. Data Analysis
2.2.2. Source Contribution Investigation
2.2.3. Identification of Potential Source Regions
2.2.4. Health Risk Assessment
3. Results and Discussion
3.1. Trends of Air Pollutants
3.2. Concurrent Pollution of O3 and PM2.5
3.2.1. Correlations between O3 and PM2.5
3.2.2. Influence of Precursors and Meteorological Parameters
3.3. Contributions of VOC Sources
3.4. Potential Source Regions of O3 and PM2.5
3.5. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Parrish, D.D.; Wang, S.; Bao, F.; Ni, R.; Li, X.; Yang, S.; Wang, H.; Cheng, Y.; Su, H. Long-Term Trend of Ozone Pollution in China during 2014-2020: Distinct Seasonal and Spatial Characteristics and Ozone Sensitivity. Atmos. Chem. Phys. 2022, 22, 8935–8949. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Wang, X.; Gao, M.; Li, K.; Zhang, Y.; Yue, X.; Zhang, Y. Rapid Increases in Warm-Season Surface Ozone and Resulting Health Impact in China since 2013. Environ. Sci. Technol. Lett. 2020, 7, 240–247. [Google Scholar] [CrossRef]
- Zhu, J.; Liao, H.; Mao, Y.; Yang, Y.; Jiang, H. Interannual Variation, Decadal Trend, and Future Change in Ozone Outflow from East Asia. Atmos. Chem. Phys. 2017, 17, 3729–3747. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, W.; Wang, S.; Song, T.; Gong, Z.; Ji, D.; Wang, L.; Liu, Z.; Tang, G.; Huo, Y.; et al. Contrasting Trends of PM2.5 and Surface-Ozone Concentrations in China from 2013 to 2017. Natl. Sci. Rev. 2020, 7, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Liu, S.; Ma, L.; Zhang, Z.; Du, J.; Zhou, Y.; Meng, F. Evaluating the Meteorological Normalized PM2.5 Trend (2014–2019) in the “2 + 26” Region of China Using an Ensemble Learning Technique. Environ. Pollut. 2020, 266, 115346. [Google Scholar] [CrossRef] [PubMed]
- Kan, H.; Chen, R.; Tong, S. Ambient Air Pollution, Climate Change, and Population Health in China. Environ. Int. 2012, 42, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Xu, R.; Ye, T.; Xie, Y.; Zhao, Y.; Liu, H.; Yu, W.; Zhang, Y.; Li, S.; Zhang, Z.; et al. Mortality Burden Due to Long-Term Exposure to Ambient PM2.5 above the New WHO Air Quality Guideline Based on 296 Cities in China. Environ. Int. 2022, 166, 107331. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Yu, W. The Effects of PM2.5 Concentrations and Relative Humidity on Atmospheric Visibility in Beijing. J. Geophys. Res. Atmos. 2019, 124, 2235–2259. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2021; 2391p, ISBN 9781009157896. [Google Scholar]
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-Term Exposure to Particulate Matter (PM10 and PM2.5), Nitrogen Dioxide (NO2), and Ozone (O3) and All-Cause and Cause-Specific Mortality: Systematic Review and Meta-Analysis. Environ. Int. 2020, 142, 105876. [Google Scholar] [CrossRef]
- Chen, J.; Hoek, G. Long-Term Exposure to PM and All-Cause and Cause-Specific Mortality: A Systematic Review and Meta-Analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [CrossRef]
- Sun, H.Z.; Yu, P.; Lan, C.; Wan, M.W.L.; Hickman, S.; Murulitharan, J.; Shen, H.; Yuan, L.; Guo, Y.; Archibald, A.T. Cohort-Based Long-Term Ozone Exposure-Associated Mortality Risks with Adjusted Metrics: A Systematic Review and Meta-Analysis. Innovation 2022, 3, 100246. [Google Scholar] [CrossRef]
- Alexeeff, S.E.; Liao, N.S.; Liu, X.; Van Den Eeden, S.K.; Sidney, S. Long-Term PM2.5 Exposure and Risks of Ischemic Heart Disease and Stroke Events: Review and Meta-Analysis. J. Am. Heart Assoc. 2021, 10, 1–22. [Google Scholar] [CrossRef]
- Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; Abegaz, K.H.; Abolhassani, H.; Aboyans, V.; et al. Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Xiao, Q.; Geng, G.; Xue, T.; Liu, S.; Cai, C.; He, K.; Zhang, Q. Tracking PM2.5 and O3 Pollution and the Related Health Burden in China 2013–2020. Environ. Sci. Technol. 2022, 56, 6922–6932. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021; ISBN 9789240034228. [Google Scholar]
- Ministry of Ecology and Environment. Report on the State of the Ecology and Environment in China 2022; Ministry of Ecology and Environment: Beijing, China, 2022; pp. 3–16.
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric Ozone and Its Precursors from the Urban to the Global Scale from Air Quality to Short-Lived Climate Forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric Chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic Drivers of 2013–2017 Trends in Summer Surface Ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Lu, K.; Ma, X.; Chen, S.; He, L.; Huang, X.; Li, X.; Lin, X.; Tang, M.; Yu, D.; et al. Multiple Impacts of Aerosols on O3Production Are Largely Compensated: A Case Study Shenzhen, China. Environ. Sci. Technol. 2022, 56, 17569–17580. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Wang, W.; Yuan, B.; Parrish, D.D.; Li, X.; Lu, K.; Wu, L.; Wang, X.; Mo, Z.; Yang, S.; et al. Quantifying the Role of PM2.5 Dropping in Variations of Ground-Level Ozone: Inter-Comparison between Beijing and Los Angeles. Sci. Total Environ. 2021, 788, 147712. [Google Scholar] [CrossRef]
- Qin, M.; Hu, A.; Mao, J.; Li, X.; Sheng, L.; Sun, J.; Li, J.; Wang, X.; Zhang, Y.; Hu, J. PM2.5 and O3 Relationships Affected by the Atmospheric Oxidizing Capacity in the Yangtze River Delta, China. Sci. Total Environ. 2022, 810, 152268. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, Z.; Shang, D.; Zhang, Z.; Xu, N.; Zong, T.; Zhao, G.; Tang, L.; Guo, S.; Wang, S.; et al. The Temporal and Spatial Distribution of the Correlation between PM2.5 and O3 Contractions in the Urban Atmosphere of China. Chin. Sci. Bull. 2022, 67, 2008–2017. [Google Scholar] [CrossRef]
- Shenzhen Municipal Bureau of Ecology and Environment. Report on the State of the Ecology and Environment in Shenzhen 2022; Bureau of Ecology and Environment of Shenzhen Municipality: Shenzhen, China, 2022; pp. 3–6.
- Department of Science and Technology Standards, Ministry of Environmental Protection. Ambient Air Quality Standards; Ministry of Environmental Protection: Beijing, China, 2012; pp. 1–12.
- Tang, M.X.; Huang, X.F.; Sun, T.L.; Cheng, Y.; Luo, Y.; Chen, Z.; Lin, X.Y.; Cao, L.M.; Zhai, Y.H.; He, L.Y. Decisive Role of Ozone Formation Control in Winter PM2.5 Mitigation in Shenzhen, China. Environ. Pollut. 2022, 301, 119027. [Google Scholar] [CrossRef]
- Yun, L.; Lin, C.-X.; Li, C.-L.; Qiu, Z.C.; Gu, T.F.; Li, G.-C.; Zhang, M.; Guo, J.F. Characteristics of VOCs and Assessment of Emission Reduction Effect During the Epidemic Lockdown Period in Shenzhen Urban Area. Environ. Sci. 2023, 44, 3788–3796. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, A.; Fang, Q.; Ye, Y.; Yang, H.; Chen, J.; Wu, W.; Hou, Y.; Mo, J.; Fu, Z. Impacts of COVID-19 Lockdown on Air Quality in Shenzhen in Spring 2022. Environ. Sci. 2023, 44, 3117–3129. [Google Scholar]
- Paatero, P. Least Squares Formulation of Robust Non-Negative Factor Analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Zeng, P.; Guo, H.; Cheng, H.; Wang, Z.; Zeng, L.; Lyu, X.; Zhan, L.; Yang, Z. Aromatic Hydrocarbons in Urban and Suburban Atmospheres in Central China: Spatiotemporal Patterns, Source Implications, and Health Risk Assessment. Atmosphere 2019, 10, 565. [Google Scholar] [CrossRef]
- Zeng, P.; Lyu, X.P.; Guo, H.; Cheng, H.R.; Jiang, F.; Pan, W.Z.; Wang, Z.W.; Liang, S.W.; Hu, Y.Q. Causes of Ozone Pollution in Summer in Wuhan, Central China. Environ. Pollut. 2018, 241, 852–861. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; United States Environmental Protection Agency: Washington, DC, USA, 2014; pp. 1–3.
- Yang, W.; Zhang, Y.; Wang, X.; Li, S.; Zhu, M.; Yu, Q.; Li, G.; Huang, Z.; Zhang, H.; Wu, Z.; et al. Volatile Organic Compounds at a Rural Site in Beijing: Influence of Temporary Emission Control and Wintertime Heating. Atmos. Chem. Phys. 2018, 18, 12663–12682. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, H.R.; Ling, Z.H.; Louie, P.K.K.; Ayoko, G.A. Which Emission Sources Are Responsible for the Volatile Organic Compounds in the Atmosphere of Pearl River Delta? J. Hazard. Mater. 2011, 188, 116–124. [Google Scholar] [CrossRef]
- Carter, W.P.L. Updated Maximum Incremental Reactivity Scale and Hydrocarbon Bin Reactivity for Regulatory Applications. Calif. Air Resour. Board Contract 2010, 339, 1–22. [Google Scholar]
- Carter, W.P.L. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Air Waste 1994, 44, 881–899. [Google Scholar] [CrossRef]
- Grosjean, D. In Situ Organic Aerosol Formation during a Smog Episode: Estimated Production and Chemical Functionality. Atmos. Environ. Part A Gen. Top. 1992, 26, 953–963. [Google Scholar] [CrossRef]
- Grosjean, D.; Seinfeld, J.H. Parameterization of the Formation Potential of Secondary Organic Aerosols. Atmos. Environ. 1989, 23, 1733–1747. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-Based Software That Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-Term Air Pollution Measurement Data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Liu, B.; Liang, D.; Yang, J.; Dai, Q.; Bi, X.; Feng, Y.; Yuan, J.; Xiao, Z.; Zhang, Y.; Xu, H. Characterization and Source Apportionment of Volatile Organic Compounds Based on 1-Year of Observational Data in Tianjin, China. Environ. Pollut. 2016, 218, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhou, L.; Fu, Q.; Yan, L.; Bian, Q.; Wang, D.; Xiu, G. Vertical Distribution of Ozone over Shanghai during Late Spring: A Balloon-Borne Observation. Atmos. Environ. 2019, 208, 48–60. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, T.; Xiang, Y.; Lv, L.; Fan, G.; Ou, J. Investigation of Atmospheric Ozone during Summer and Autumn in Guangdong Province with a Lidar Network. Sci. Total Environ. 2021, 751, 141740. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Huang, X.; Shi, H.; Cai, X.; Song, Y. Transport Pathways and Potential Sources of PM10 in Beijing. Atmos. Environ. 2011, 45, 594–604. [Google Scholar] [CrossRef]
- Li, M.; Huang, X.; Zhu, L.; Li, J.; Song, Y.; Cai, X.; Xie, S. Analysis of the Transport Pathways and Potential Sources of PM10 in Shanghai Based on Three Methods. Sci. Total Environ. 2012, 414, 525–534. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, F.; Cheng, H.R.; Simpson, I.J.; Wang, X.M.; Ding, A.J.; Wang, T.J.; Saunders, S.M.; Wang, T.J.; Lam, S.H.M.; et al. Concurrent Observations of Air Pollutants at Two Sites in the Pearl River Delta and the Implication of Regional Transport. Atmos. Chem. Phys. 2009, 9, 9747–9791. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Sun, Y.; Ji, D.; Wang, Y. Long-Range Transport and Regional Sources of PM2.5 in Beijing Based on Long-Term Observations from 2005 to 2010. Atmos. Res. 2015, 157, 37–48. [Google Scholar] [CrossRef]
- Fang, D.; Wang, Q.; Li, H.; Yu, Y.; Lu, Y.; Qian, X. Mortality Effects Assessment of Ambient PM2.5 Pollution in the 74 Leading Cities of China. Sci. Total Environ. 2016, 569–570, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Global Air Quality Guidelines 2021; WHO: Geneva, Switzerland, 2021; ISBN 9789812837134. [Google Scholar]
- Liu, J.; Yin, H.; Tang, X.; Zhu, T.; Zhang, Q.; Liu, Z.; Tang, X.L.; Yi, H.H. Transition in Air Pollution, Disease Burden and Health Cost in China: A Comparative Study of Long-Term and Short-Term Exposure. Environ. Pollut. 2021, 277, 116770. [Google Scholar] [CrossRef] [PubMed]
- Giannadaki, D.; Giannakis, E.; Pozzer, A.; Lelieveld, J. Estimating Health and Economic Benefits of Reductions in Air Pollution from Agriculture. Sci. Total Environ. 2018, 622–623, 1304–1316. [Google Scholar] [CrossRef]
- Maji, K.J.; Ye, W.-F.; Arora, M.; Nagendra, S.M.S. Ozone Pollution in Chinese Cities: Assessment of Seasonal Variation, Health Effects and Economic Burden. Environ. Pollut. 2019, 247, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Li, X.; Ma, G.; Zhou, Y.; Yu, F.; Zhang, Y.; Yang, W. Assessing the Value of a Statistical Life of Air Pollution in Chengdu-Chongqing Area by Contingent Value Method with Single Bounded Dichotomy. Chin. J. Environ. Manag. 2021, 13, 136–141. [Google Scholar] [CrossRef]
- Hammitt, J.K.; Robinson, L.A. The Income Elasticity of the Value per Statistical Life: Transferring Estimates between High and Low Income Populations. J. Benefit-Cost Anal. 2011, 2, 1–29. [Google Scholar] [CrossRef]
- Zeng, X.; Ruan, F.; Jiang, Y. Spatial Distribution and Health Effects of Ozone Pollution in China. China Environ. Sci. 2019, 39, 4025–4032. [Google Scholar]
- OECD. Mortality Risk Valuation in Environment, Health and Transport Policies; OECD Publishing: Paris, France, 2012; ISBN 9789264130760. [Google Scholar]
- Li, C.; Hammer, M.S.; Zheng, B.; Cohen, R.C. Accelerated Reduction of Air Pollutants in China, 2017–2020. Sci. Total Environ. 2022, 803, 150011. [Google Scholar] [CrossRef]
- Xue, R.; Wang, S.; Li, D.; Zou, Z.; Chan, K.L.; Valks, P.; Saiz-Lopez, A.; Zhou, B. Spatio-Temporal Variations in NO2 and SO2 over Shanghai and Chongming Eco-Island Measured by Ozone Monitoring Instrument (OMI) during 2008–2017. J. Clean. Prod. 2020, 258, 120563. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Guo, H.; Lyu, X.; Cheng, H.; Ling, Z.; Louie, P.K.K.; Simpson, I.J.; Meinardi, S.; Blake, D.R. Long-Term O3–Precursor Relationships in Hong Kong: Field Observation and Model Simulation. Atmos. Chem. Phys. 2017, 17, 10919–10935. [Google Scholar] [CrossRef]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of Major Air Pollutants to COVID-19 Lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wen, Y.; Wang, Y.; Zhang, S.; Zhang, K.M.; Zheng, H.; Xing, J.; Wu, Y.; Hao, J. Four-Month Changes in Air Quality during and after the COVID-19 Lockdown in Six Megacities in China. Environ. Sci. Technol. Lett. 2020, 7, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Mo, Z.; Yuan, B.; Huang, S.; Huangfu, Y.; Wang, Z.; Li, X.; Yang, S.; Wang, W.W.; Zhao, Y.; et al. An Observation Approach in Evaluation of Ozone Production to Precursor Changes during the COVID-19 Lockdown. Atmos. Environ. 2021, 262, 118618. [Google Scholar] [CrossRef] [PubMed]
- Slezakova, K.; Pereira, M.C. 2020 COVID-19 Lockdown and the Impacts on Air Quality with Emphasis on Urban, Suburban and Rural Zones. Sci. Rep. 2021, 11, 21336. [Google Scholar] [CrossRef]
- Li, X.B.; Yuan, B.; Parrish, D.D.; Chen, D.; Song, Y.; Yang, S.; Liu, Z.; Shao, M. Long-Term Trend of Ozone in Southern China Reveals Future Mitigation Strategy for Air Pollution. Atmos. Environ. 2022, 269, 118869. [Google Scholar] [CrossRef]
- Tan, Z.; Lu, K.; Jiang, M.; Su, R.; Wang, H.; Lou, S.; Fu, Q.; Zhai, C.; Tan, Q.; Yue, D.; et al. Daytime Atmospheric Oxidation Capacity in Four Chinese Megacities during the Photochemically Polluted Season: A Case Study Based on Box Model Simulation. Atmos. Chem. Phys. 2019, 19, 3493–3513. [Google Scholar] [CrossRef]
- Feng, T.; Bei, N.; Huang, R.J.; Cao, J.; Zhang, Q.; Zhou, W.; Tie, X.; Liu, S.; Zhang, T.; Su, X.; et al. Summertime Ozone Formation in Xi’an and Surrounding Areas, China. Atmos. Chem. Phys. 2016, 16, 4323–4342. [Google Scholar] [CrossRef]
- Wang, C.; Huang, X.F.; Zhu, Q.; Cao, L.M.; Zhang, B.; He, L.Y. Differentiating Local and Regional Sources of Chinese Urban Air Pollution Based on the Effect of the Spring Festival. Atmos. Chem. Phys. 2017, 17, 9103–9114. [Google Scholar] [CrossRef]
- Ding, A.J.; Fu, C.B.; Yang, X.Q.; Sun, J.N.; Zheng, L.F.; Xie, Y.N.; Herrmann, E.; Nie, W.; Petäjä, T.; Kerminen, V.-M.M.; et al. Ozone and Fine Particle in the Western Yangtze River Delta: An Overview of 1 Yr Data at the SORPES Station. Atmos. Chem. Phys. 2013, 13, 5813–5830. [Google Scholar] [CrossRef]
- Zeren, Y.; Zhou, B.; Zheng, Y.; Jiang, F.; Lyu, X.; Xue, L.; Wang, H.; Liu, X.; Guo, H. Does Ozone Pollution Share the Same Formation Mechanisms in the Bay Areas of China? Environ. Sci. Technol. 2022, 56, 14326–14337. [Google Scholar] [CrossRef]
- Deng, T.; Wang, T.; Wang, S.; Zou, Y.; Yin, C.; Li, F.; Liu, L.; Wang, N.; Song, L.; Wu, C.; et al. Impact of Typhoon Periphery on High Ozone and High Aerosol Pollution in the Pearl River Delta Region. Sci. Total Environ. 2019, 668, 617–630. [Google Scholar] [CrossRef] [PubMed]
- IQAir. 2022 World Air Quality Report; IQAir: Goldach, Switzerland, 2022; pp. 11–12. [Google Scholar]
- Wang, L.; Zhao, B.; Zhang, Y.; Hu, H. Correlation between Surface PM2.5 and O3 in Eastern China during 2015–2019: Spatiotemporal Variations and Meteorological Impacts. Atmos. Environ. 2023, 294, 119520. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.H.; Zhang, Q.; Zhai, S. A Two-Pollutant Strategy for Improving Ozone and Particulate Air Quality in China. Nat. Geosci. 2019, 12, 906–910. [Google Scholar] [CrossRef]
- Atkinson, R. Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes. J. Phys. Chem. Ref. Data 1997, 26, 215–290. [Google Scholar] [CrossRef]
- Jia, M.; Zhao, T.; Cheng, X.; Gong, S.; Zhang, X.; Tang, L.; Liu, D.; Wu, X.; Wang, L.; Chen, Y. Inverse Relations of PM2.5 and O3 in Air Compound Pollution between Cold and Hot Seasons over an Urban Area of East China. Atmosphere 2017, 8, 59. [Google Scholar] [CrossRef]
- Dai, H.; Zhu, J.; Liao, H.; Li, J.; Liang, M.; Yang, Y.; Yue, X. Co-Occurrence of Ozone and PM2.5 Pollution in the Yangtze River Delta over 2013–2019: Spatiotemporal Distribution and Meteorological Conditions. Atmos. Res. 2021, 249, 105363. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Wang, Q.; Qu, Y.; Wu, H.; Xie, M.; Li, M.; Li, S.; Zhuang, B. Spatiotemporal Variations of PM2.5 and O3 Relationship during 2014–2021 in Eastern China. Aerosol Air Qual. Res. 2023, 23, 1–16. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Liao, H.; Dang, R. Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons. Atmosphere 2019, 10, 352. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Fu, Y.F.; Yang, Y.J.; Liu, G.S. Impact of Atmospheric Circulations on Aerosol Distributions in Autumn over Eastern China: Observational Evidence. Atmos. Chem. Phys. 2015, 15, 12115–12138. [Google Scholar] [CrossRef]
- Wu, X.; Xu, L.; Hong, Y.; Chen, J.; Qiu, Y.; Hu, B.; Hong, Z.; Zhang, Y.; Liu, T.; Chen, Y.; et al. The Air Pollution Governed by Subtropical High in a Coastal City in Southeast China: Formation Processes and Influencing Mechanisms. Sci. Total Environ. 2019, 692, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Xu, J.; Tie, X.; Gao, W. The Impact of Climate Change on the Western Pacific Subtropical High and the Related Ozone Pollution in Shanghai, China. Sci. Rep. 2019, 9, 16998. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Cai, C.; Zhu, B.; An, J.; Li, Y.; Li, Y. Source Apportionment of VOCs in a Suburb of Nanjing, China, in Autumn and Winter. J. Atmos. Chem. 2014, 71, 175–193. [Google Scholar] [CrossRef]
- Tong, L.; Liao, X.; Chen, J.; Xiao, H.; Xu, L.; Zhang, F.; Niu, Z.; Yu, J. Pollution Characteristics of Ambient Volatile Organic Compounds (VOCs) in the Southeast Coastal Cities of China. Environ. Sci. Pollut. Res. 2013, 20, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source Profiles of Volatile Organic Compounds (VOCs) Measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Chin, J.Y.; Batterman, S.A. VOC Composition of Current Motor Vehicle Fuels and Vapors, and Collinearity Analyses for Receptor Modeling. Chemosphere 2012, 86, 951–958. [Google Scholar] [CrossRef]
- Yuan, B.; Shao, M.; Lu, S.; Wang, B. Source Profiles of Volatile Organic Compounds Associated with Solvent Use in Beijing, China. Atmos. Environ. 2010, 44, 1919–1926. [Google Scholar] [CrossRef]
- Lyu, X.P.; Chen, N.; Guo, H.; Zhang, W.H.; Wang, N.; Wang, Y.; Liu, M. Ambient Volatile Organic Compounds and Their Effect on Ozone Production in Wuhan, Central China. Sci. Total Environ. 2016, 541, 200–209. [Google Scholar] [CrossRef]
- Ling, Z.H.; Guo, H. Contribution of VOC Sources to Photochemical Ozone Formation and Its Control Policy Implication in Hong Kong. Environ. Sci. Policy 2014, 38, 180–191. [Google Scholar] [CrossRef]
- Li, J.; Zhai, C.; Yu, J.; Liu, R.; Li, Y.; Zeng, L.; Xie, S. Spatiotemporal Variations of Ambient Volatile Organic Compounds and Their Sources in Chongqing, a Mountainous Megacity in China. Sci. Total Environ. 2018, 627, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, M.; Zhang, J.; Fu, L.L.; Lu, S.H. Distributions and Source Apportionment of Ambient Volatile Organic Compounds in Beijing City, China. J. Environ. Sci. Health Part A—Toxic/Hazard. Subst. Environ. Eng. 2005, 40, 1843–1860. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.M.; Guo, H.; Zheng, J.Y.; Cheung, K.; Louie, P.K.K.; Ling, Z.H.; Wang, D.W. Concentrations and Sources of Non-Methane Hydrocarbons (NMHCs) from 2005 to 2013 in Hong Kong: A Multi-Year Real-Time Data Analysis. Atmos. Environ. 2015, 103, 196–206. [Google Scholar] [CrossRef]
- Peng, X.; Xie, T.-T.; Tang, M.-X.; Cheng, Y.; Peng, Y.; Wei, F.H.; Cao, L.M.; Yu, K.; Du, K.; He, L.Y.; et al. Critical Role of Secondary Organic Aerosol in Urban Atmospheric Visibility Improvement Identified by Machine Learning. Environ. Sci. Technol. Lett. 2023, 10, 976–982. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, C.; Zhao, H. A Health Impact and Economic Loss Assessment of O3 and PM2.5 Exposure in China From 2015 to 2020. GeoHealth 2022, 6, 1–15. [Google Scholar] [CrossRef]
Season | MDA8 O3-PM2.5 | MDA8 O3-OX | PM2.5-OX |
---|---|---|---|
Annual | 0.48 ** | 0.84 ** | 0.65 ** |
Spring | 0.40 ** | 0.85 ** | 0.56 ** |
Summer | 0.62 ** | 0.86 ** | 0.75 ** |
Autumn | 0.53 ** | 0.87 ** | 0.62 ** |
Winter | 0.34 ** | 0.75 ** | 0.53 ** |
Source | Contribution (%) | ||
---|---|---|---|
VOCs | O3 Formation | SOA Formation | |
Vehicle exhaust | 43.1 ± 1.5% | 27.7 ± 0.6% | 20.8 ± 0.04% |
Fuel evaporation | 15.3 ± 1.1% | 17.5 ± 0.4% | 25.8 ± 0.4% |
(Vehicle emissions) | 58.4 ± 1.3% | 45.3 ± 0.6% | 46.6 ± 0.4% |
Solvent usage | 20.2 ± 1.3% | 24.8 ± 0.5% | 41.7 ± 0.3% |
Stationary combustion | 21.4 ± 1.3% | 30.0 ± 0.8% | 11.7 ± 0.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, P.; Huang, X.; Yan, M.; Zheng, Z.; Qiu, Z.; Yun, L.; Lin, C.; Zhang, L. Ambient Ozone and Fine Particular Matter Pollution in a Megacity in South China: Trends, Concurrent Pollution, and Health Risk Assessment. Atmosphere 2023, 14, 1806. https://doi.org/10.3390/atmos14121806
Zeng P, Huang X, Yan M, Zheng Z, Qiu Z, Yun L, Lin C, Zhang L. Ambient Ozone and Fine Particular Matter Pollution in a Megacity in South China: Trends, Concurrent Pollution, and Health Risk Assessment. Atmosphere. 2023; 14(12):1806. https://doi.org/10.3390/atmos14121806
Chicago/Turabian StyleZeng, Pei, Xiaobo Huang, Min Yan, Zhuoyun Zheng, Zhicheng Qiu, Long Yun, Chuxiong Lin, and Li Zhang. 2023. "Ambient Ozone and Fine Particular Matter Pollution in a Megacity in South China: Trends, Concurrent Pollution, and Health Risk Assessment" Atmosphere 14, no. 12: 1806. https://doi.org/10.3390/atmos14121806
APA StyleZeng, P., Huang, X., Yan, M., Zheng, Z., Qiu, Z., Yun, L., Lin, C., & Zhang, L. (2023). Ambient Ozone and Fine Particular Matter Pollution in a Megacity in South China: Trends, Concurrent Pollution, and Health Risk Assessment. Atmosphere, 14(12), 1806. https://doi.org/10.3390/atmos14121806