Oscillations of GW Activities in the MLT Region over Mid-Low-Latitude Area, Kunming Station (25.6° N, 103.8° E)
Abstract
:1. Introduction
2. Data and Processing Method
2.1. Kunming MF Radar
2.2. Datasets and Analysis Method
3. Results
4. Discussion
5. Summary
- (1)
- At Kunming area, the HF GWs act lively; the energy focuses on the waves with a period of <2 h. Meanwhile, the changes in power spectral density with the period of <2 h are almost linear as the decreasing frequency. Conversely, the decreasing gradient behaves gently as a decreasing frequency when its period is larger than 2 h.
- (2)
- The semiannual oscillation dominates the meridional GW variance below 90 km, and seasonal variation plays an important role in the meridional GW variance above 92 km and the zonal GW variance at all heights. For the GW variance with a period of <1 h, the variance is stronger in autumn and spring, with the maximum occurring in September, December, and March; moreover, the oscillations with a period of 30–90 days can also be found.
- (3)
- The behaviors of GW activity are consistent with that of turbulent velocity. The propagating direction of GW activity shows significant semiannual variation, and at the same time, the wave intensity is stronger above 92 km. Moreover, the propagating direction angle is rich.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Xu, J.; Wang, W.; Wang, G.; Ruohoniemi, J.M.; Shinbori, A.; Nishitani, N.; Wang, C.; Deng, X.; Lan, A.; et al. Oscillations of the ionosphere caused by the 2022 Tonga volcanic eruption observed with SuperDARN radars. Geophys. Res. Lett. 2022, 49, e2022GL100555. [Google Scholar] [CrossRef]
- Chen, J.S.; Xu, L.L.; Ma, C.B.; Li, N.; Lin, L.K. A new method of determining momentum flux based on the all-sky meteor radar. Chin. J. Radio Sci. 2016, 31, 1124–1131. [Google Scholar]
- Andrews, D.G.; Holton, J.R.; Leovy, C.B. Middle Atmosphere Dynamics. In An Introduction to Dynamic Meteorology, 5th ed.; James, R.H., Gregory, J.H., Eds.; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef]
- Kruse, C.G.; Alexander, M.J.; Bramberger, M.; Chattopadhyay, A.; Hassanzadeh, P.; Green, B.; Grimsdell, A.; Hoffmann, L. Recreating observed convection-generated GWs from weather radar observations via a neural network and a dynamical atmospheric model. Authorea Prepr. 2023, 97, 621–638. [Google Scholar]
- Franco-Diaz, E.; Gerding, M.; Holt, L.; Strelnikova, I.; Wing, R.; Baumgarten, G.; Lubken, F.J. Convective GW events during summer near 54N, present in both AIRS and RMR Lidar observations. Egusphere 2023. [Google Scholar] [CrossRef]
- Hoffmann, L.; Xue, X.; Alexander, M.J. A global view of stratospheric GW hotspots located with atmospheric infrared sounder 380 observations. J. Geophys. Res. Atmos. 2013, 118, 416–434. [Google Scholar] [CrossRef]
- Ern, M.; Hoffmann, L.; Rhode, S.; Preusse, P. The mesoscale GW response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing. Geophys. Res. Lett. 2022, 49, e2022GL098626. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H.; Zhong, Y.; Xia, H.; Qian, C. The Temporal Evolution of F-Region Equatorial Ionization Anomaly Owing to the 2022 Tonga Volcanic Eruption. Remote Sens. 2022, 14, 5714. [Google Scholar] [CrossRef]
- Wang, H.; Xia, H.; Zhang, K. Variations in the Equatorial Ionospheric F Region Current during the 2022 Tonga Volcanic Eruption. Remote Sens. 2022, 14, 6241. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Vierinen, J.; Aa, E.; Goncharenko, L.P.; Erickson, P.J.; Rideout, W.; Coster, A.J.; Spicher, A. 2022 Tonga Volcanic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves. Front. Astron. Space Sci. 2022, 9, 871275. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, C.H.; Sun, Y.Y.; Chen, C.H.; Tsai, H.F.; Yen, H.Y.; Chum, J.; Lastovicka, J.; Yang, Q.S.; Chen, W.S.; et al. The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake over Taiwan. Geophys. Res. Lett. 2016, 43, 1759–1765. [Google Scholar] [CrossRef]
- Plougonven, R.; de la Cámara, A.; Hertzog, A.; Lott, F. How does knowledge of atmospheric GWs guide their parameterizations? Q. J. R. Meteorol. Soc. 2020, 146, 1529–1543. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, T.; Liu, H.-L. Large Scale Gravity Waves perturbations in mesosphere region above northern hemisphere mid-latitude during Autumn-equinox: A joint study by Na Lidar and Whole Atmosphere Community Climate Model. Ann. Geophys. 2017, 35, 181–188. [Google Scholar] [CrossRef]
- Li, J.; Lu, X. SABER observations of GW responses to the Madden-Julian Oscillation from the stratosphere to the lower thermosphere in tropics and extratropics. Geophys. Res. Lett. 2020, 47, e2020GL091014. [Google Scholar] [CrossRef]
- Fritts, D.C.; Vincent, R.A. Mesospheric momentum flux studies at Adelaide, Australia: Observations and a GW-tidal interaction model. J. Atmos. Sci. 1987, 44, 605–619. [Google Scholar] [CrossRef]
- Baumgarten, K.; Gerding, M.; Baumgarten, G.; Lübken, F.-J. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding. Atmos. Chem. Phys. 2018, 18, 371–384. [Google Scholar] [CrossRef]
- Pramitha, M.; Kumar, K.K.; Ratnam, M.V.; Praveen, M.; Rao, S.V.B. GW source spectra appropriation for mesosphere lower thermosphere using meteor radar observations and GROGRAT model simulations. Geophys. Res. Lett. 2020, 47, e2020GL089390. [Google Scholar] [CrossRef]
- Matsumoto, N.; Shinbori, A.; Riggin, D.M.; Tsuda, T. Measurement of momentum flux using two meteor radars in Indonesia. Ann. Geophys. 2016, 34, 369–377. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Tang, Q.; Chen, Z.; Liu, Y.; Zhou, C. Diurnal and Seasonal Variation of High-Frequency GWs at Mohe and Wuhan. Atmosphere 2022, 13, 1069. [Google Scholar] [CrossRef]
- Manson, A.H.; Meek, C.E.; Hall, G.E. Correlations of GWs and tides in the mesosphere over Saskatoon. J. Atmos. Sol.-Terr. Phys. 1998, 60, 1089–1107. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Riggin, D.M.; Fritts, D.C. Medium-frequency radar studies of gravity-wave seasonal variations over Hawaii (22N, 160W). J. Geophys. Res. Atmos. 2003, 108, 4655. [Google Scholar] [CrossRef]
- Appleton, E.V. Two anomalies in the ionosphere. Nature 1946, 157, 691. [Google Scholar] [CrossRef]
- Xiong, C.; Luhr, H.; Ma, S.Y. The magnitude and interhemispheric asymmetry of equatorial ionization anomaly-based on CHAMP and GRACE observations. J. Atmos. Sol.-Terr. Phys. 2013, 105–106, 160–169. [Google Scholar] [CrossRef]
- Immel, T.J.; Sagawa, E.; England, S.L. Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 2006, 33, L15108. [Google Scholar] [CrossRef]
- Hartman, W.A.; Heelis, R.A. Longitudinal variations in the equatorial vertical drift in the topside ionosphere. J. Geophys. Res. Space Phys. 2007, 112, A03305. [Google Scholar] [CrossRef]
- Luhr, H.; Hausler, K.; Stolle, C. Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys. Res. Lett. 2007, 34, L16102. [Google Scholar] [CrossRef]
- Luhr, H.; Rother, M.; Hausler, K. The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J. Geophys. Res. Space Phys. 2008, 113, A08313. [Google Scholar] [CrossRef]
- Mo, X.H.; Zhang, D.H.; Goncharenko, L.P. Quasi-16-day periodic meridional movement of the equatorial ionization anomaly. Ann. Geophys. 2014, 32, 121–131. [Google Scholar] [CrossRef]
- Mo, X.H.; Zhang, D.H.; Goncharenko, L.P. Meridional movement of northern and southern equatorial ionization anomaly crests in the East-Asian sector during 2002–2003 SSW. Sci. China Earth Sci. 2017, 60, 776–785. [Google Scholar] [CrossRef]
- Mo, X.H.; Zhang, D.H. Lunar tidal modulation of periodic meridional movement of equatorial ionization anomaly crest during sudden stratospheric warming. J. Geophys. Res. Space Phys. 2018, 123, 1488–1499. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.S.; Ding, Z.H.; Li, N.; Zhao, Z.W. First observations of tidal oscillations by an MF radar over Kunming (25.6N, 103.8E). J. Atmos. Sol.-Terr. Phys. 2012, 78–79, 44–52. [Google Scholar] [CrossRef]
- Li, N.; Chen, J.S.; Ding, Z.H.; Zhao, Z.W. Mean winds observed by the Kunming MF radar in 2008–2010. J. Atmos. Sol.-Terr. Phys. 2015, 122, 58–65. [Google Scholar] [CrossRef]
- Yi, W.; Chen, J.-S.; Ma, C.-B.; Li, N.; Zhao, Z.-W. Observation of Upper Atmospheric Temperature by Kunming All-Sky Meteor Radar. Chin. J. Geophys. 2014, 57, 750–760. [Google Scholar]
- Zeng, J.; Yi, W.; Xue, X.; Reid, I.; Hao, X.; Li, N.; Chen, J.; Chen, T.; Dou, X. Comparison between the Mesospheric Winds Observed by Two Collocated Meteor Radars at Low Latitudes. Remote Sens. 2022, 14, 2354. [Google Scholar] [CrossRef]
- Holdsworth, D.A.; Reid, I.M. Spaced antenna analysis of atmospheric radar backscatter model data. Radio Sci. 1995, 30, 1417–1433. [Google Scholar] [CrossRef]
- Royrvik, O. Spaced antenna drift at Jicamarca, mesospheric measurements. Radio Sci. 1983, 18, 461–476. [Google Scholar] [CrossRef]
- Manson, A.H.; Meek, C.E. GW Propagation Characteristics (60–120 km) as Determined by the Saskatoon MF Radar (Gravnet) System: 1983–85 at 52° N, 107° W. Atmos. Sci. 1988, 45, 932–946. [Google Scholar] [CrossRef]
- Reid, I.M.; Vincent, R.A. Measurement of the horizontal scales and phase velocities of short period mesospheric GWs at Adelaide, Australia. J. Atmos. Terr. Phys. 1987, 49, 1033–1048. [Google Scholar] [CrossRef]
- Hibbins, R.E.; Espy, P.J.; Jarvis, M.J.; Riggin, D.M.; Fritts, D.C. A climatology of tides and GW variance in the MLT above Rothera, Antarctica obtained by MF radar. J. Atmos. Sol.-Terr. Phys. 2007, 69, 578–588. [Google Scholar] [CrossRef]
- Hoffmann, P.; Becker, E.; Singer, W.; Placke, M. Seasonal variation of mesospheric waves at northern middle and high latitudes. J. Atmos. Sol.-Terr. Phys. 2010, 72, 1068–1079. [Google Scholar] [CrossRef]
- Taylor, M.J.; Ryan, E.H.; Tuan, T.F.; Edwards, R. Evidence of preferential directions for GW propagation due to wind filtering in the middle atmosphere. J. Geophys. Res. Space Phys. 1993, 98, 6047–6057. [Google Scholar] [CrossRef]
- Becker, E. Sensitivity of the upper mesosphere to the Lorenz energy cycle of the troposphere. J. Atmos. Sci. 2009, 66, 647–666. [Google Scholar] [CrossRef]
- Clemesha, B.R.; Batista, P.P.; da Costa, R.A.B.; Schuch, N. Seasonal variations in GW activity at three locations in Brazil. Ann. Geophys. 2009, 27, 1059–1065. [Google Scholar] [CrossRef]
- Antonita, T.M.; Ramkumar, G.; Kumar, K.K.; Deepa, V. Meteor wind radar observations of GW momentum fluxes and their forcing toward the Mesospheric Semiannual Oscillation. J. Geophys. Res. Atmos. 2008, 113, D10115. [Google Scholar] [CrossRef]
Location | 25.6° N, 103.8° E |
Operation frequency | 2.138 MHz |
Peak envelope power | 64 kW |
Half-power pulse width | 21.33 μs |
Antenna spacing | 170 m |
Range resolution | 3.2 km |
Sampling interval | 2 km |
Time resolution | 3 min |
Antenna | 4 cross dipoles (for Tx and Rx) |
Parameter | Day Value | Night Value |
---|---|---|
Height resolution | 2 km | 2 km |
Start range | 50 km | 50 km |
Polarization | O-mode | E-mode |
PRF | 80 Hz | 40 Hz |
Coherent integrations | 32 | 16 |
Number of samples | 285 | 285 |
Record length | 114 s | 114 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Chen, J.; Wang, J.; Zhao, L.; Ding, Z.; He, G. Oscillations of GW Activities in the MLT Region over Mid-Low-Latitude Area, Kunming Station (25.6° N, 103.8° E). Atmosphere 2023, 14, 1810. https://doi.org/10.3390/atmos14121810
Li N, Chen J, Wang J, Zhao L, Ding Z, He G. Oscillations of GW Activities in the MLT Region over Mid-Low-Latitude Area, Kunming Station (25.6° N, 103.8° E). Atmosphere. 2023; 14(12):1810. https://doi.org/10.3390/atmos14121810
Chicago/Turabian StyleLi, Na, Jinsong Chen, Jianyuan Wang, Lei Zhao, Zonghua Ding, and Guojin He. 2023. "Oscillations of GW Activities in the MLT Region over Mid-Low-Latitude Area, Kunming Station (25.6° N, 103.8° E)" Atmosphere 14, no. 12: 1810. https://doi.org/10.3390/atmos14121810
APA StyleLi, N., Chen, J., Wang, J., Zhao, L., Ding, Z., & He, G. (2023). Oscillations of GW Activities in the MLT Region over Mid-Low-Latitude Area, Kunming Station (25.6° N, 103.8° E). Atmosphere, 14(12), 1810. https://doi.org/10.3390/atmos14121810