Formaldehyde Continuous Monitoring at a Rural Station North of Rome: Appraisal of Local Sources Contribution and Meteorological Drivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. On-Line Formaldehyde Analyzer
2.3. Additional Measurements
2.4. HYSPLIT Backward Trajectories
3. Results and Discussion
3.1. Meteorological Conditions during the Study Period
3.2. Formaldehyde Trends and Correlations among Collected Data
3.2.1. Daily and Weekly Cycles of the Pollutants
3.2.2. Peak Events Observed during the Study Period
3.3. Formaldehyde to Nitrogen Dioxide Ratio as Photochemical Indicator (PI)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 9781118947401. [Google Scholar]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-Tert-Butoxypropan-2-ol. Volume 88; International Agency for Research on Cancer: Lyon, France, 2006. [Google Scholar]
- Commission Regulation (EU) 2015/491 of 23 March 2015 Amending Regulation (EU) No 605/2014 Amending, for the Purposes of Introducing Hazard and Precautionary Statements in the Croatian Language and Its Adaptation to Technical and Scientific Progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on Classification, Labelling and Packaging of Substances and Mixtures. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R0491&from=PL (accessed on 6 December 2023).
- Protano, C.; Buomprisco, G.; Cammalleri, V.; Pocino, R.N.; Marotta, D.; Simonazzi, S.; Cardoni, F.; Petyx, M.; Iavicoli, S.; Vitali, M. The Carcinogenic Effects of Formaldehyde Occupational Exposure: A Systematic Review. Cancers 2022, 14, 165. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.epa.gov/sites/default/files/2016-09/documents/formaldehyde.pdf (accessed on 6 December 2023).
- Birmili, W.; Daniels, A.; Bethke, R.; Schechner, N.; Brasse, G.; Conrad, A.; Kolossa-Gehring, M.; Debiak, M.; Hurraß, J.; Uhde, E.; et al. Formaldehyde, aliphatic aldehydes (C2–C11), furfural, and benzaldehyde in the residential indoor air of children and adolescents during the German Environmental Survey 2014–2017. Indoor Air 2022, 32, e12927. [Google Scholar] [CrossRef] [PubMed]
- Trocquet, C.; Lara-Ibeas, I.; Schulz, A.; Bernhardt, P.; Cormerais, B.; Englaro, S.; Le Calvé, S. Continuous aldehydes monitoring in primary schools in France: Evaluation of emission sources and ventilation practices over 5 weeks. Atmos. Pollut. Res. 2021, 12, 340–351. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kelsch, A.; Eatough, D.J.; Thalman, R.; Daher, N.; Kelly, K.; Jaramillo, I.C.; Hansen, J.C. Sources of Formaldehyde in Bountiful, Utah. Atmosphere 2021, 12, 375. [Google Scholar] [CrossRef]
- Dienhart, D.; Crowley, J.N.; Bourtsoukidis, E.; Edtbauer, A.; Eger, P.G.; Harder, H.; Hottmann, B.; Martinez, M.; Parchatka, U.; Paris, J.D.; et al. Measurement report: Observation-based formaldehyde production rates and their relation to OH reactivity around the Arabian Peninsula. Atmos. Chem. Phys. 2021, 21, 17373–17388. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Y.; Huang, W.; Ling, Z.; Wang, Z.; Wang, X. Carbonyl compounds in the atmosphere: A review of abundance, source and their contributions to O3 and SOA formation. Atmos. Res. 2022, 274, 106184. [Google Scholar] [CrossRef]
- Marcon, A.; Panunzi, S.; Stafoggia, M.; Badaloni, C.; de Hoogh, K.; Guarda, L.; Locatelli, F.; Silocchi, C.; Ricci, P.; Marchetti, P. Spatial variability of nitrogen dioxide and formaldehyde and residential exposure of children in the industrial area of Viadana, Northern Italy. Environ. Sci. Pollut. Res. 2021, 28, 28096–28106. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Z.; Yu, T.; Liu, C.; Qian, H.; Li, J. Seasonal and diurnal patterns of outdoor formaldehyde and impacts on indoor environments and health. Environ. Res. 2022, 205, 112550. [Google Scholar] [CrossRef]
- Parrish, D.D.; Ryerson, T.B.; Mellqvist, J.; Johansson, J.; Fried, A.; Richter, D.; Walega, J.G.; Washenfelder, R.A.; de Gouw, J.A.; Peischl, J.; et al. Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region. Atmos. Chem. Phys. 2012, 12, 3273–3288. Available online: https://www.atmos-chem-phys.net/12/3273/2012 (accessed on 6 December 2023). [CrossRef]
- Qian, X.; Shen, H.; Chen, Z. Characterizing summer and winter carbonyl compounds in Beijing atmosphere. Atmos. Environ. 2019, 214, 116845. [Google Scholar] [CrossRef]
- Green, J.R.; Fiddler, M.N.; Fibiger, D.L.; Erin, E.; McDuffie, E.E.; Aquino, J.; Campos, T.; Shah, V.; Jaeglé, L.; Thornton, J.A.; et al. Wintertime Formaldehyde: Airborne Observations and Source Apportionment Over the Eastern United States. J. Geophys. Res. Atmos. 2021, 126, e2020JD033518. [Google Scholar] [CrossRef]
- Preunkert, S.; Legrand, M.; Frey, M.M.; Kukui, A.; Savarino, J.; Gallée, H.; King, M.; Jourdain, B.; Vicars, W.; Helmig, D. Formaldehyde (HCHO) in air, snow, and interstitial air at Concordia (East Antarctic Plateau) in summer. Atmos. Chem. Phys. 2015, 15, 6689–6705. [Google Scholar] [CrossRef]
- Leuchner, M.; Ghasemifard, H.; Lüpke, M.; Ries, L.; Schunk, C.; Menzel, A. Seasonal and Diurnal Variation of Formaldehyde and its Meteorological Drivers at the GAW Site Zugspitze. Aerosol Air Qual. Res. 2016, 16, 801–815. [Google Scholar] [CrossRef]
- Rocco, M.; Colomb, A.; Baray, J.-L.; Amelynck, C.; Verreyken, B.; Borbon, A.; Pichon, J.-M.; Bouvier, L.; Schoon, N.; Gros, V.; et al. Analysis of Volatile Organic Compounds during the OCTAVE Campaign: Sources and Distributions of Formaldehyde on Reunion Island. Atmosphere 2020, 11, 140. [Google Scholar] [CrossRef]
- Aakko-Saksa, P.; Koponen, P.; Roslund, P.; Laurikko, J.; Nylund, N.-O.; Karjalainen, P.; Rönkkö, T.; Timonen, H. Comprehensive emission characterisation of exhaust from alternative fuelled cars. Atmos. Environ. 2020, 236, 117643. [Google Scholar] [CrossRef]
- de Blas, M.; Ibáñez, P.; García, J.A.; Gómez, M.C.; Navazo, M.; Alonso, L.; Durana, N.; Iza, J.; Gangoiti, G.; Sáez de Cámara, E. Summertime high resolution variability of atmospheric formaldehyde and non-methane volatile organic compounds in a rural background area. Sci. Total Environ. 2019, 647, 862–877. [Google Scholar] [CrossRef] [PubMed]
- Luecken, D.J.; Hutzell, W.T.; Strum, M.L.; Pouliot, G.A. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling. Atmos. Environ. 2012, 47, 477–490. [Google Scholar] [CrossRef]
- Salthammer, T. Formaldehyde in the ambient atmosphere: From an indoor pollutant to an outdoor pollutant? Angew. Chem. Int. Ed. 2013, 52, 3320–3327. [Google Scholar] [CrossRef]
- Cheng, P.; Liu, Z.; Feng, Y.; Han, Y.; Peng, Y.; Cai, J.; Chen, Y. Emission characteristics and formation pathways of carbonyl compounds from the combustion of biomass and their cellulose, hemicellulose, and lignin at different temperatures and oxygen concentrations. Atmos. Environ. 2022, 291, 119387. [Google Scholar] [CrossRef]
- Solberg, S.; Dye, C.; Walker, S.-E.; Simpson, D. Long-term measurements and model calculations of formaldehyde at rural European monitoring sites. Atmos. Environ. 2001, 35, 195–207. [Google Scholar] [CrossRef]
- Largiuni, O.; Giacomelli, M.C.; Piccardi, G. Concentration of Peroxides and Formaldehyde in Air and Rain and Gas-Rain Partitioning. J. Atmos. Chem. 2002, 41, 1–20. [Google Scholar] [CrossRef]
- Balzani Lööv, J.M.; Henne, S.; Legreid, G.; Staehelin, J.; Reimann, S.; Prévôt, A.S.H.; Steinbacher, M.; Vollmer, M.K. Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m asl). J. Geophys. Res. Atmos. 2008, 113, D22. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Wang, S. Ambient formaldehyde and its contributing factor to ozone and OH radical in a rural area. Atmos. Environ. 2010, 44, 2074–2078. [Google Scholar] [CrossRef]
- Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/DOC/?uri=CELEX:52022PC0542 (accessed on 6 December 2023).
- Available online: https://demo.istat.it/app/?a=2022&i=D7B (accessed on 6 December 2023).
- Ciccioli, P.; Brancaleoni, E.; Frattoni, M. Chapter 5—Reactive Hydrocarbons in the Atmosphere at Urban and Regional Scales. In Reactive Hydrocarbons in the Atmosphere; Hewitt, C.N., Ed.; Academic Press: Cambridge, MA, USA, 1999; pp. 159–207. [Google Scholar] [CrossRef]
- Brines, M.; Dall’Osto, M.; Beddows, D.C.S.; Harrison, R.M.; Gómez-Moreno, F.; Núñez, L.; Artíñano, B.; Costabile, F.; Gobbi, G.P.; Salimi, F.; et al. Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities. Atmos. Chem. Phys. 2015, 15, 5929–5945. [Google Scholar] [CrossRef]
- Possanzini, M.; Tagliacozzo, G.; Cecinato, A. Ambient Levels and Sources of Lower Carbonyls at Montelibretti, Rome (Italy). Water Air Soil Pollut. 2007, 183, 447–454. [Google Scholar] [CrossRef]
- Carbone, C.; Decesari, S.; Mircea, M.; Giulianelli, L.; Finessi, E.; Rinaldi, M.; Fuzzi, S.; Marinoni, A.; Duchi, R.; Perrino, C.; et al. Size-resolved aerosol chemical composition over the Italian Peninsula during typical summer and winter conditions. Atmos. Environ. 2010, 44, 5269–5278. [Google Scholar] [CrossRef]
- Yttri, K.E.; Simpson, D.; Bergström, R.; Kiss, G.; Szidat, S.; Ceburnis, D.; Eckhardt, S.; Hueglin, C.; Nøjgaard, J.K.; Perrino, C.; et al. The EMEP Intensive Measurement Period campaign, 2008–2009: Characterizing carbonaceous aerosol at nine rural sites in Europe. Atmos. Chem. Phys. 2019, 19, 4211–4233. [Google Scholar] [CrossRef]
- Nash, T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 1953, 55, 416–421. [Google Scholar] [CrossRef]
- Kelly, T.J.; Fortune, C.R. Continuous monitoring of gaseous formaldehyde using an improved fluorescence approach. Int. J. Environ. Anal. Chem. 1994, 54, 249–263. [Google Scholar] [CrossRef]
- Available online: https://www.aero-laser.de/fileadmin/downloads/AL4021-manual-Rev.2.2.pdf (accessed on 6 December 2023).
- Hak, C.; Pundt, I.; Trick, S.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A.S.H.; Junkermann, W.; Astorga-Lloréns, C.; et al. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air. Atmos. Chem. Phys. 2005, 5, 2881–2900. [Google Scholar] [CrossRef]
- Hladová, M.; Martinka, J.; Rantuch, P.; Necas, A. Review of spectrophotometric methods for determination of formaldehyde. J. Slovak Univ. Technol. 2019, 27, 105–120. [Google Scholar] [CrossRef]
- Junkermann, W.; Burger, J.M. A new portable Instrument for Continuous Measurement of Formaldehyde in Ambient Air. J. Atmos. Ocean. Technol. 2006, 23, 38–45. [Google Scholar] [CrossRef]
- EN 14625:2012; Air, CEN Ambient. Standard Method for the Measurement of the Concentration of Ozone by Ultraviolet Photometry. European Committee for Standardization: Brussels, Belgium, 2012.
- EN 14211:2012; Air, CEN Ambient. Ambient Air—Standard Method for the Measurement of the Concentration of Nitrogen Dioxide and Nitrogen Monoxide by Chemiluminescence. European Committee for Standardization: Brussels, Belgium, 2012.
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Iannarelli, A.M.; Diémoz, H.; ·Casadio, S.; Cacciani, M.; Siani, A.M. Analysis of two-decade meteorological and air quality trends in Rome (Italy). Theor. Appl. Climatol. 2022, 149, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Di Bernardino, A.; Mazzarella, V.; Pecci, M.; Casasanta, G.; Cacciani, M.; Ferretti, R. Interaction of the Sea Breeze with the Urban Area of Rome: WRF Mesoscale and WRF Large-Eddy Simulations Compared to Ground-Based Observations. Bound. Layer Meteorol. 2022, 185, 333–363. [Google Scholar] [CrossRef]
- Bassani, C.; Vichi, F.; Esposito, G.; Falasca, S.; Di Bernardino, A.; Battistelli, F.; Casadio, S.; Iannarelli, A.M.; Ianniello, A. Characterization of Nitrogen Dioxide Variability Using Ground-Based and Satellite Remote Sensing and In Situ Measurements in the Tiber Valley (Lazio, Italy). Remote Sens. 2023, 15, 3703. [Google Scholar] [CrossRef]
- Possanzini, M.; Di Palo, V.; Brancaleoni, E.; Frattoni, M.; Ciccioli, P. A train of carbon and DNPH-coated cartridges for the determination of carbonyls from C1 to C12 and emission samples. Atmos. Environ. 2000, 34, 5311–5318. [Google Scholar] [CrossRef]
- Possanzini, M.; Di Palo, V.; Cecinato, A. Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air. Atmos. Environ. 2002, 36, 3195–3201. [Google Scholar] [CrossRef]
- Zhang, K.; Batterman, S. Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 2013, 450–451, 307–316. [Google Scholar] [CrossRef]
- Blanchard, C.L.; Tanenbaum, S.J. Differences between Weekday and Weekend Air Pollutant Levels in Southern California. J. Air Waste Manag. 2003, 53, 816–828. [Google Scholar] [CrossRef]
- Hassan, S.K.; El-Abssawy, A.A.; Khoder, M.I. Effect of Seasonal Variation on the Levels and Behaviours of Formaldehyde in the Atmosphere of a Suburban Area in Cairo, Egypt. Asian J. Atmos. Environ. (AJAE) 2018, 12, 356–368. [Google Scholar] [CrossRef]
- Biswas, M.S.; Mahajan, A.S. Year-long Concurrent MAX-DOAS Observations of Nitrogen Dioxide and Formaldehyde at Pune: Understanding Diurnal and Seasonal Variation Drivers. Aerosol Air Qual. Res. 2021, 21, 200524. [Google Scholar] [CrossRef]
- Carslaw, D.; Beevers, S. Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environ. Model. Softw. 2013, 40, 325–329. [Google Scholar] [CrossRef]
- Wert, B.P.; Fried, A.; Henry, B.; Cartier, S. Evaluation of inlets used for the airborne measurement of formaldehyde. J. Geophys. Res. 2002, 107, ACH-3. [Google Scholar] [CrossRef]
- Liu, C.; Shi, K. A review on methodology in O3-NOx-VOC sensitivity study. Environ. Pollut. 2021, 291, 118249. [Google Scholar] [CrossRef] [PubMed]
- Jenkin, M.E.; Clemitshaw, K.C. Ozone and other secondary photochemical pollutants: Chemical processes governing their formation in the planetary boundary layer. Atmos. Environ. 2000, 34, 2499–2527. [Google Scholar] [CrossRef]
- Li, X.; Qin, M.; Li, L.; Gong, K.; Shen, H.; Li, J.; Hu, J. Examining the implications of photochemical indicators for O3–NOx–VOC sensitivity and control strategies: A case study in the Yangtze River Delta (YRD), China. Atmos. Chem. Phys. 2022, 22, 14799–14811. [Google Scholar] [CrossRef]
- Fares, S.; Mereu, S.; Scarascia Mugnozza, G.; Vitale, M.; Manes, F.; Frattoni, M.; Ciccioli, P.; Gerosa, G.; Loreto, F. The ACCENT-VOCBAS field campaign on biosphere-atmosphere interactions in a Mediterranean ecosystem of Castelporziano (Rome): Site characteristics, climatic and meteorological conditions, and eco-physiology of vegetation. Biogeosciences 2009, 6, 1043–1058. Available online: https://www.biogeosciences.net/6/1043/2009/ (accessed on 6 December 2023). [CrossRef]
- Ciccioli, P.; Silibello, C.; Finardi, S.; Pepe, N.; Ciccioli, P.; Rapparini, F.; Neri, L.; Fares, S.; Brilli, F.; Mircea, M.; et al. The potential impact of biogenic volatile organic compounds (BVOCs) from terrestrial vegetation on a Mediterranean area using two different emission models. Agric. For. Meteorol. 2023, 328, 109255. [Google Scholar] [CrossRef]
Month | N | T (°C) | TMAX (°C) | Tmin (°C) | N | RH (%) | N | P (hPa) | N | Glob. Rad. (W/m2) | Glob. Rad.MAX (W/m2) | N | UVA (W/m2) | UVB (W/m2) | N | WS (m/s) | WSMAX (m/s) | WSmin (m/s) | N | Rain (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
January (15–31) | 4886 | 7.7 | 18.0 | −2.6 | 4886 | 78.2 | 4886 | 1025.4 | 647 | 380.6 | 696.36 | 4886 | 6.9 | 0.2 | 4884 | 2.0 | 9.9 | <0.5 | 4886 | 5.8 |
February | 8055 | 10.4 | 20.7 | −1.3 | 8055 | 73.3 | 8055 | 1023.2 | 4335 | 238.1 | 1011.52 | 8055 | 8.8 | 0.2 | 7983 | 2.3 | 13.5 | <0.5 | 8055 | 26.8 |
March | 8109 | 10.8 | 23.8 | −1.0 | 8101 | 62.9 | 8106 | 1024.8 | 8919 | 227.9 | 1050.28 | 8919 | 11.3 | 0.2 | 8907 | 2.1 | 10.4 | <0.5 | 8919 | 29 |
April | 8009 | 14.3 | 26.9 | 1.34 | 8009 | 67.2 | 8007 | 1016.5 | 8639 | 285.6 | 1372.78 | 8637 | 15.0 | 0.2 | 8335 | 2.4 | 9.7 | <0.5 | 8639 | 26.2 |
May | 8923 | 20.9 | 35.4 | 7.2 | 8915 | 65.6 | 8921 | 1019.4 | 8919 | 317.5 | 1385.08 | 8919 | 16.8 | 0.2 | 8802 | 1.8 | 11.1 | <0.5 | 8919 | 48.4 |
June | 8639 | 26.3 | 41.2 | 14.8 | 8639 | 55.4 | 8639 | 1018.0 | 8639 | 357.5 | 1264.78 | 8639 | 18.8 | 0.2 | 8202 | 2.0 | 12.5 | <0.5 | 8639 | 30 |
July | 6118 | 27.9 | 39.8 | 15.9 | 6118 | 55.9 | 6114 | 1018.3 | 8927 | 374.6 | 1321.6 | 8927 | 19.7 | 0.2 | 6375 | 1.9 | 16.1 | <0.5 | 8927 | 46.8 |
August | 8924 | 27.1 | 39 | 16.9 | 8897 | 61.4 | 8924 | 1015.7 | 8897 | 311.2 | 1242.88 | 8897 | 16.8 | 0.2 | 8485 | 2.0 | 16.0 | <0.5 | 8866 | 26.8 |
September | 8639 | 22.4 | 35.4 | 9.9 | 8639 | 70.8 | 8639 | 1016.5 | 8639 | 235.6 | 1149.52 | 8639 | 13.1 | 0.2 | 8197 | 2.0 | 10.4 | <0.5 | 8639 | 130 |
October | 8928 | 18.8 | 29.0 | 7.9 | 8928 | 79.1 | 8928 | 1025.4 | 8928 | 197.7 | 1019.74 | 8928 | 10.7 | 0.2 | 8427 | 1.0 | 6.8 | <0.5 | 8928 | 17.8 |
November | 8639 | 13.7 | 26.9 | 3.3 | 8639 | 81.5 | 8639 | 1018.0 | 8639 | 123.2 | 801.82 | 8639 | 7.3 | 0.2 | 8480 | 1.9 | 10.5 | <0.5 | 8639 | 109 |
December | 8926 | 11.7 | 20.4 | 1.5 | 8926 | 90.5 | 8926 | 1020.2 | 8926 | 97.7 | 666.95 | 8926 | 6.1 | 0.2 | 5908 | 1.0 | 8.6 | <0.5 | 8926 | 140.8 |
HCHO (ppb) | NO2 (ppb) | NO (ppb) | O3 (ppb) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Month | N | Ave. | St. Dev. | Max. | Min. | N | Ave. | St. Dev. | Max. | Min. | N | Ave. | St. Dev. | Max. | Min. | N | Ave. | St. Dev. | Max. | Min. |
January | 4541 | 1.7 | 1.1 | 14.0 | 0.1 | 4884 | 9.0 | 5.7 | 44.1 | 0.4 | 4884 | 2.8 | 5.2 | 80.6 | 0.4 | 4618 | 16.2 | 11.8 | 45.5 | 0.5 |
February | 7509 | 1.3 | 0.8 | 9.7 | 0.1 | 7989 | 6.8 | 5.2 | 35.2 | 0.4 | 7984 | 1.5 | 3.0 | 39.1 | 0.4 | 7984 | 23.5 | 12.7 | 48.2 | 0.9 |
March | 8425 | 1.5 | 0.8 | 8.9 | 0.1 | 8928 | 5.2 | 4.0 | 35.1 | 0.4 | 8928 | 1.0 | 1.8 | 44.8 | 0.4 | 8928 | 31.7 | 14.1 | 66.4 | 1.6 |
April | 8028 | 0.9 | 0.6 | 5.7 | 0.1 | 8335 | 3.2 | 2.8 | 24.3 | 0.4 | 8335 | 0.8 | 1.6 | 42.5 | 0.4 | 8332 | 32.0 | 13.5 | 67.8 | 1.2 |
May | 8570 | 1.4 | 0.9 | 6.7 | 0.1 | 8621 | 3.4 | 2.8 | 22.1 | 0.4 | 8621 | 0.8 | 1.8 | 36.9 | 0.4 | 8759 | 32.8 | 17.4 | 93.0 | 1.9 |
June | 7994 | 2.3 | 1.0 | 7.3 | 0.1 | 8371 | 3.2 | 2.4 | 20.5 | 0.4 | 8371 | 0.7 | 0.9 | 20.8 | 0.4 | 8331 | 37.4 | 17.5 | 95.6 | 2.1 |
July | 8468 | 2.4 | 1.0 | 15.0 | 0.1 | 8840 | 3.6 | 2.6 | 19.2 | 0.4 | 8840 | 1.0 | 1.4 | 26.4 | 0.4 | 8748 | 39.5 | 19.5 | 96.1 | 1.6 |
August | 5687 | 1.9 | 0.9 | 5.8 | 0.1 | 8479 | 3.7 | 2.2 | 18.5 | 0.4 | 8479 | 1.0 | 1.9 | 32.0 | 0.4 | 8489 | 38.5 | 18.9 | 83.7 | 1.5 |
September | 8365 | 1.2 | 0.7 | 7.3 | 0.1 | 8497 | 4.3 | 3.3 | 28.9 | 0.4 | 8497 | 1.3 | 2.1 | 43.7 | 0.4 | 8441 | 29.6 | 14.8 | 76.1 | 1.3 |
October | 8757 | 1.1 | 0.8 | 4.4 | 0.1 | 8202 | 6.4 | 4.0 | 37.4 | 0.4 | 8202 | 2.6 | 4.8 | 66.8 | 0.4 | 8355 | 19.5 | 14.0 | 56.2 | 0.4 |
November | 8174 | 1.0 | 0.7 | 7.0 | 0.1 | 8310 | 6.7 | 4.5 | 38.9 | 0.4 | 8304 | 2.8 | 4.4 | 66.5 | 0.4 | 8347 | 17.0 | 11.3 | 48.4 | 0.8 |
December | 3851 | 0.8 | 0.6 | 4.8 | 0.1 | 5922 | 6.1 | 3.5 | 29.0 | 0.4 | 5892 | 4.7 | 5.2 | 50.2 | 0.4 | 7649 | 11.7 | 10.1 | 64.3 | 0.4 |
Year | 88,369 | 1.5 | 0.8 | 8.1 | 0.1 | 95,378 | 5.1 | 3.6 | 29.4 | 0.4 | 95,337 | 1.8 | 2.8 | 45.9 | 0.4 | 96,981 | 27.5 | 14.6 | 70.1 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vichi, F.; Bassani, C.; Ianniello, A.; Esposito, G.; Montagnoli, M.; Imperiali, A. Formaldehyde Continuous Monitoring at a Rural Station North of Rome: Appraisal of Local Sources Contribution and Meteorological Drivers. Atmosphere 2023, 14, 1833. https://doi.org/10.3390/atmos14121833
Vichi F, Bassani C, Ianniello A, Esposito G, Montagnoli M, Imperiali A. Formaldehyde Continuous Monitoring at a Rural Station North of Rome: Appraisal of Local Sources Contribution and Meteorological Drivers. Atmosphere. 2023; 14(12):1833. https://doi.org/10.3390/atmos14121833
Chicago/Turabian StyleVichi, Francesca, Cristiana Bassani, Antonietta Ianniello, Giulio Esposito, Mauro Montagnoli, and Andrea Imperiali. 2023. "Formaldehyde Continuous Monitoring at a Rural Station North of Rome: Appraisal of Local Sources Contribution and Meteorological Drivers" Atmosphere 14, no. 12: 1833. https://doi.org/10.3390/atmos14121833
APA StyleVichi, F., Bassani, C., Ianniello, A., Esposito, G., Montagnoli, M., & Imperiali, A. (2023). Formaldehyde Continuous Monitoring at a Rural Station North of Rome: Appraisal of Local Sources Contribution and Meteorological Drivers. Atmosphere, 14(12), 1833. https://doi.org/10.3390/atmos14121833