Efficacy of the CO Tracer Technique in Partitioning Biogenic and Anthropogenic Atmospheric CO2 Signals in the Humid Subtropical Eastern Highland Rim City of Cookeville, Tennessee
Abstract
:1. Introduction
2. Study Site and Methods
2.1. Study Site
2.2. Continuous Wavelength-Scanned Cavity Ring-Down Measurements
2.3. Estimation of Urban Biogenic and Anthropogenic CO2 Signal
2.4. Review of Methane and Biogenic Isoprene’s Contribution to CO in Cookeville
3. Results and Discussion
3.1. Baseline Concentrations
3.2. Anthropogenic CO:CO2 Emission Ratios (β−1 Values)
3.3. Wintertime Biogenic and Anthropogenic CO2
3.4. Springtime and Anthropogenic CO2
3.5. Broader Environmental Implications: Carbon Cycle and Balance in Urban Areas
4. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, H.; Lu, C.; Ciais, P.; Michalak, A.M.; Canadell, J.G.; Saikawa, E.; Huntzinger, D.N.; Gurney, K.R.; Sitch, S.; Zhang, B.; et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 2016, 531, 225–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hes, G.; Sánchez Goñi, M.F.; Bouttes, N. Impact of terrestrial biosphere on the atmospheric CO2 concentration across termination V. Clim. Past 2022, 18, 1429–1451. [Google Scholar] [CrossRef]
- Keenan, T.F.; Williams, C.A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 2018, 43, 219–243. [Google Scholar] [CrossRef]
- Marquis, M.; Tans, P. Carbon crucible. Science 2008, 320, 460–461. [Google Scholar] [CrossRef]
- Ciais, P.; Peylin, P.; Bousquet, P. Regional biospheric carbon fluxes as inferred from atmospheric CO2 measurements. Ecol. Appl. 2000, 10, 1574–1589. [Google Scholar] [CrossRef]
- Kraemer, G.; Camps-Valls, G.; Reichstein, M.; Mahecha, M.D. Summarizing the state of the terrestrial biosphere in few dimensions. Biogeosciences 2020, 17, 2397–2424. [Google Scholar] [CrossRef]
- Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B.D.; Ciais, P.; Poulter, B.; Bayer, A.D.; Bondeau, A.; Calle, L.; Chini, L.P.; et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat. Geosci. 2017, 10, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Takata, K.; Patra, P.K.; Kotani, A.; Mori, J.; Belikov, D.; Ichii, K.; Saeki, T.; Ohta, T.; Saito, K.; Ueyama, M.; et al. Reconciliation of top-down and bottom-up CO2 fluxes in siberian larch forest. Environ. Res. Lett. 2017, 12, 125012. [Google Scholar] [CrossRef]
- Graven, H.; Keeling, R.F.; Rogelj, J. Changes to carbon isotopes in atmospheric CO2 over the industrial era and into the future. Glob. Biogeochem. Cycles 2020, 34, e2019GB006170. [Google Scholar] [CrossRef]
- Basu, S.; Lehman, S.J.; Miller, J.B.; Andrews, A.E.; Sweeney, C.; Gurney, K.R.; Xu, X.; Southon, J.; Tans, P.P. Estimating us fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2. Proc. Natl. Acad. Sci. USA 2020, 117, 13300–13307. [Google Scholar] [CrossRef]
- Yu, M.-Y.; Lin, Y.-C.; Zhang, Y.-L. Estimation of atmospheric fossil fuel CO2 traced by Δ14C: Current status and outlook. Atmosphere 2022, 13, 2131. [Google Scholar] [CrossRef]
- Parazoo, N.C.; Bowman, K.W.; Baier, B.C.; Liu, J.; Lee, M.; Kuai, L.; Shiga, Y.; Baker, I.; Whelan, M.E.; Feng, S.; et al. Covariation of airborne biogenic tracers (CO2, COS, and CO) supports stronger than expected growing season photosynthetic uptake in the southeastern US. Glob. Biogeochem. Cycles 2021, 35, e2021GB006956. [Google Scholar] [CrossRef]
- Nathan, B.; Lauvaux, T.; Turnbull, J.; Gurney, K. Investigations into the use of multi-species measurements for source apportionment of the Indianapolis fossil fuel CO2 signal. Elem. Sci. Anth. 2018, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Han, Z.; Han, G.; Ma, X.; Chen, H.; Andersen, T.; Mao, H.; Chen, C.; Zhang, H.; Gong, W. Retrieving CH4-emission rates from coal mine ventilation shafts using UAV-based aircore observations and the genetic algorithm–interior point penalty function (GA-IPPF) model. Atmos. Chem. Phys. 2022, 22, 13881–13896. [Google Scholar] [CrossRef]
- Shi, T.; Han, G.; Ma, X.; Gong, W.; Chen, W.; Liu, J.; Zhang, X.; Pei, Z.; Gou, H.; Bu, L. Quantifying CO2 uptakes over oceans using LIDAR: A tentative experiment in bohai bay. Geophys. Res. Lett. 2021, 48, e2020GL091160. [Google Scholar] [CrossRef]
- Gurney, K.R.; Liang, J.; Roest, G.; Song, Y.; Mueller, K.; Lauvaux, T. Under-reporting of greenhouse gas emissions in U.S. Cities. Nat. Commun. 2021, 12, 553. [Google Scholar] [CrossRef]
- Churkina, G.; Brown, D.G.; Keoleian, G. Carbon stored in human settlements: The conterminous United States. Glob. Chang. Biol. 2010, 16, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Hutyra, L.R.; Duren, R.; Gurney, K.R.; Grimm, N.; Kort, E.A.; Larson, E.; Shrestha, G. Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective. Earth’s Future 2014, 2, 473–495. [Google Scholar] [CrossRef] [Green Version]
- Raciti, S.M.; Hutyra, L.R.; Newell, J.D. Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in boston neighborhoods. Sci. Total Environ. 2014, 500–501, 72–83. [Google Scholar] [CrossRef]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, K.-J. Research on urban heat-island effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Schneider, A. The footprint of urban climates on vegetation phenology. Geophys. Res. Lett. 2004, 31, L12209. [Google Scholar] [CrossRef]
- Melaas, E.K.; Wang, J.A.; Miller, D.L.; Friedl, M.A. Interactions between urban vegetation and surface urban heat islands: A case study in the Boston metropolitan region. Environ. Res. Lett. 2016, 11, 054020. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Matsunaga, T.; Tan, Z.-H.; Saigusa, N.; Shirai, T.; Tang, Y.; Peng, S.; Fukuda, Y. Global terrestrial carbon fluxes of 1999-2019 estimated by upscaling eddy covariance data with a random forest. Sci. Data 2020, 7, 313. [Google Scholar] [CrossRef] [PubMed]
- Monson, R.; Baldocchi, D. Terrestrial Biosphere-Atmosphere Fluxes; Cambridge University Press: Cambridge, UK, 2014; pp. 1–487. [Google Scholar]
- Wu, D.; Lin, J.C.; Duarte, H.F.; Yadav, V.; Parazoo, N.C.; Oda, T.; Kort, E.A. A model for urban biogenic CO2 fluxes: Solar-induced fluorescence for modeling urban biogenic fluxes (smurf v1). Geosci. Model Dev. 2021, 14, 3633–3661. [Google Scholar] [CrossRef]
- Miller, J.B.; Lehman, S.J.; Verhulst, K.R.; Miller, C.E.; Duren, R.M.; Yadav, V.; Newman, S.; Sloop, C.D. Large and seasonally varying biospheric CO2 fluxes in the Los Angeles megacity revealed by atmospheric radiocarbon. Proc. Natl. Acad. Sci. USA 2020, 117, 26681–26687. [Google Scholar] [CrossRef]
- Solazzo, E.; Crippa, M.; Guizzardi, D.; Muntean, M.; Choulga, M.; Janssens-Maenhout, G. Uncertainties in the emissions database for global atmospheric research (EDGAR) emission inventory of greenhouse gases. Atmos. Chem. Phys. 2021, 21, 5655–5683. [Google Scholar] [CrossRef]
- Gamage, L.P.; Hix, E.G.; Gichuhi, W.K. Ground-based atmospheric measurements of CO:CO2 ratios in eastern highland rim using a CO tracer technique. ACS Earth Space Chem. 2020, 4, 558–571. [Google Scholar] [CrossRef]
- Gamage, L.P.; Gichuhi, W.K. Efficacy of a wavelength-scanned cavity ring-down spectroscopic technique in estimating enteric methane emissions in ruminants. ACS Earth Space Chem. 2018, 2, 673–682. [Google Scholar] [CrossRef]
- Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Oney, B.; Gruber, N.; Henne, S.; Leuenberger, M.; Brunner, D. A CO-based method to determine the regional biospheric signal in atmospheric CO2. Tellus Ser. B 2017, 69, 1353388. [Google Scholar] [CrossRef]
- Djuricin, S.; Pataki, D.E.; Xu, X. A comparison of tracer methods for quantifying CO2 sources in an urban region. J. Geophys. Res. Atmos. 2010, 115, D11303. [Google Scholar] [CrossRef]
- Lopez, M.; Schmidt, M.; Delmotte, M.; Colomb, A.; Gros, V.; Janssen, C.; Lehman, S.J.; Mondelain, D.; Perrussel, O.; Ramonet, M.; et al. CO, NOx and 13 CO2 as tracers for fossil fuel CO2: Results from a pilot study in Paris during winter 2010. Atmos. Chem. Phys. 2013, 13, 7343–7358. [Google Scholar] [CrossRef] [Green Version]
- Bares, R.; Lin, J.C.; Hoch, S.W.; Baasandorj, M.; Mendoza, D.L.; Fasoli, B.; Mitchell, L.; Catharine, D.; Stephens, B.B. The wintertime covariation of CO2 and criteria pollutants in an urban valley of the western United States. J. Geophys. Res. Atmos. 2018, 123, 2684–2703. [Google Scholar] [CrossRef]
- Turnbull, J.C.; Karion, A.; Fischer, M.L.; Faloona, I.; Guilderson, T.; Lehman, S.J.; Miller, B.R.; Miller, J.B.; Montzka, S.; Sherwood, T.; et al. Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009. Atmos. Chem. Phys. 2011, 11, 705–721. [Google Scholar] [CrossRef] [Green Version]
- Faïn, X.; Rhodes, R.H.; Place, P.; Petrenko, V.V.; Fourteau, K.; Chellman, N.; Crosier, E.; McConnell, J.R.; Brook, E.J.; Blunier, T.; et al. Northern Hemisphere atmospheric history of carbon monoxide since preindustrial times reconstructed from multiple greenland ice cores. Clim. Past 2022, 18, 631–647. [Google Scholar] [CrossRef]
- Duncan, B.N.; Logan, J.A.; Bey, I.; Megretskaia, I.A.; Yantosca, R.M.; Novelli, P.C.; Jones, N.B.; Rinsland, C.P. Global budget of CO, 1988–1997: Source estimates and validation with a global model. J. Geophys. Res. Atmos. 2007, 112, D22301. [Google Scholar] [CrossRef]
- Gonzalez, A.; Millet, D.B.; Yu, X.; Wells, K.C.; Griffis, T.J.; Baier, B.C.; Campbell, P.C.; Choi, Y.; DiGangi, J.P.; Gvakharia, A.; et al. Fossil versus nonfossil CO sources in the U.S: New airborne constraints from ACT-america and GEM. Geophys. Res. Lett. 2021, 48, e2021GL093361. [Google Scholar] [CrossRef]
- Hudman, R.C.; Murray, L.T.; Jacob, D.J.; Millet, D.B.; Turquety, S.; Wu, S.; Blake, D.R.; Goldstein, A.H.; Holloway, J.; Sachse, G.W. Biogenic versus anthropogenic sources of CO in the United States. Geophys. Res. Lett. 2008, 35, L04801. [Google Scholar] [CrossRef] [Green Version]
- Plant, G.; Kort, E.A.; Floerchinger, C.; Gvakharia, A.; Vimont, I.; Sweeney, C. Large fugitive methane emissions from urban centers along the U.S. east coast. Geophys. Res. Lett. 2019, 46, 8500–8507. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.-F.; Stavrakou, T.; Bauwens, M.; George, M.; Hurtmans, D.; Coheur, P.-F.; Clerbaux, C.; Sweeney, C. Top-down CO emissions based on IASI observations and hemispheric constraints on OH levels. Geophys. Res. Lett. 2018, 45, 1621–1629. [Google Scholar] [CrossRef]
- Kim, S.Y.; Millet, D.B.; Hu, L.; Mohr, M.J.; Griffis, T.J.; Wen, D.; Lin, J.C.; Miller, S.M.; Longo, M. Constraints on carbon monoxide emissions based on tall tower measurements in the U.S. Upper midwest. Environ. Sci. Technol. 2013, 47, 8316–8324. [Google Scholar] [CrossRef] [PubMed]
- Salmon, O.E.; Shepson, P.B.; Ren, X.; He, H.; Hall, D.L.; Dickerson, R.R.; Stirm, B.H.; Brown, S.S.; Fibiger, D.L.; McDuffie, E.E.; et al. Top-down estimates of NOx and CO emissions from Washington, D.C.-Baltimore during the winter campaign. J. Geophys. Res. Atmos. 2018, 123, 7705–7724. [Google Scholar] [CrossRef]
- Vimont, I.J.; Turnbull, J.C.; Petrenko, V.V.; Place, P.F.; Sweeney, C.; Miles, N.; Richardson, S.; Vaughn, B.H.; White, J.W.C. An improved estimate for the δ13C and δ18O signatures of carbon monoxide produced from atmospheric oxidation of volatile organic compounds. Atmos. Chem. Phys. 2019, 19, 8547–8562. [Google Scholar] [CrossRef] [Green Version]
- Dewitz, J. National Land Cover Database (NLCD) 2019 Products; (Ver. 2.0, June 2021); U.S. Geological Survey: Reston, Virginia, USA, 2021. [Google Scholar] [CrossRef]
- Spark, W. Climate and Average Weather Year Round in Cookeville Tennessee, United States. Available online: https://weatherspark.com/y/15151/Average-Weather-in-Cookeville-Tennessee-United-States-Year-Round (accessed on 19 December 2022).
- Zhang, H.; Yee, L.D.; Lee, B.H.; Curtis, M.P.; Worton, D.R.; Isaacman-VanWertz, G.; Offenberg, J.H.; Lewandowski, M.; Kleindienst, T.E.; Beaver, M.R.; et al. Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proc. Natl. Acad. Sci. USA 2018, 115, 2038–2043. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.B.; Zimmerman, P.R.; Harley, P.C.; Monson, R.K.; Fall, R. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. J. Geophys. Res. Atmos. 1993, 98, 12609–12617. [Google Scholar] [CrossRef] [Green Version]
- Pfister, G.G.; Emmons, L.K.; Hess, P.G.; Lamarque, J.-F.; Orlando, J.J.; Walters, S.; Guenther, A.; Palmer, P.I.; Lawrence, P.J. Contribution of isoprene to chemical budgets: A model tracer study with the ncar ctm mozart-4. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Carlton, A.; Cohen, R.C.; Brune, W.H.; Brown, S.S.; Wolfe, G.M.; Jimenez, J.L.; Pye, H.O.T.; Ng, N.L.; Xu, L.; et al. Southeast atmosphere studies: Learning from model-observation syntheses. Atmos. Chem. Phys. 2018, 18, 2615–2651. [Google Scholar] [CrossRef] [Green Version]
- Goldan, P.D.; Parrish, D.D.; Kuster, W.C.; Trainer, M.; McKeen, S.A.; Holloway, J.; Jobson, B.T.; Sueper, D.T.; Fehsenfeld, F.C. Airborne measurements of isoprene, CO, and anthropogenic hydrocarbons and their implications. J. Geophys. Res. Atmos. 2000, 105, 9091–9105. [Google Scholar] [CrossRef]
- Stroud, C.A.; Roberts, J.M.; Williams, E.J.; Hereid, D.; Angevine, W.M.; Fehsenfeld, F.C.; Wisthaler, A.; Hansel, A.; Martinez-Harder, M.; Harder, H.; et al. Nighttime isoprene trends at an urban forested site during the 1999 southern oxidant study. J. Geophys. Res. Atmos. 2002, 107, ACH 7-1–ACH 7-14. [Google Scholar] [CrossRef]
- Krystek, M.; Anton, M. A weighted total least-squares algorithm for fitting a straight line. Meas. Sci. Technol. 2007, 18, 3438–3442. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Wiberley, A.E.; Donohue, A.R. Isoprene emission from plants: Why and how. Ann. Bot. 2007, 101, 5–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Levis, S.; Wiedinmyer, C.; Bonan, G.B.; Guenther, A. Simulating biogenic volatile organic compound emissions in the community climate system model. J. Geophys. Res. Atmos. 2003, 108, 4659. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R. Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes. Atmos. Chem. Phys. 2003, 3, 2233–2307. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: New York, NY, USA, 2021. [Google Scholar]
- Sillman, S.; Carroll, M.A.; Thornberry, T.; Lamb, B.K.; Westberg, H.; Brune, W.H.; Faloona, I.; Tan, D.; Shepson, P.B.; Sumner, A.L.; et al. Loss of isoprene and sources of nighttime OH radicals at a rural site in the united states: Results from photochemical models. J. Geophys. Res. Atmos. 2002, 107, ACH 2-1–ACH 2-14. [Google Scholar] [CrossRef]
- Von Kuhlmann, R.; Lawrence, M.G.; Pöschl, U.; Crutzen, P.J. Sensitivities in global scale modeling of isoprene. Atmos. Chem. Phys. 2004, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.; Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 2003, 37, 197–219. [Google Scholar] [CrossRef]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J.; Subcommittee, I. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II-gas phase reactions of organic species. Atmos. Chem. Phys. 2006, 6, 3625–4055. [Google Scholar] [CrossRef] [Green Version]
- Bates, K.H.; Jacob, D.J. A new model mechanism for atmospheric oxidation of isoprene: Global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol. Atmos. Chem. Phys. Discuss. 2019, 19, 9613–9640. [Google Scholar] [CrossRef]
- Helmig, D.; Greenberg, J.; Guenther, A.; Zimmerman, P.; Geron, C. Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site. J. Geophys. Res. Atmos. 1998, 103, 22397–22414. [Google Scholar] [CrossRef]
- Miyoshi, A.; Hatakeyama, S.; Washida, N. OH radical initiated photooxidation of isoprene: An estimate of global CO production. J. Geophys. Res. Atmos. 1994, 99, 18779–18787. [Google Scholar] [CrossRef]
- Park, C.; Schade, G.W.; Boedeker, I. Characteristics of the flux of isoprene and its oxidation products in an urban area. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Hakkarainen, J.; Ialongo, I.; Tamminen, J. Direct space-based observations of anthropogenic CO2 emission areas from OCO-2. Geophys. Res. Lett. 2016, 43, 11–400. [Google Scholar] [CrossRef]
- Silva, S.J.; Arellano, A.F. Characterizing regional-scale combustion using satellite retrievals of CO, NO2 and CO2. Remote Sens. 2017, 9, 744. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Griffis, T.J.; Lee, X.; Millet, D.B.; Chen, Z.; Baker, J.M.; Xiao, K. Top-down constraints on anthropogenic CO2 emissions within an agricultural-urban landscape. J. Geophys. Res. Atmos. 2018, 123, 4674–4694. [Google Scholar] [CrossRef]
- Lin, J.C.; Mallia, D.V.; Wu, D.; Stephens, B.B. How can mountaintop CO2 observations be used to constrain regional carbon fluxes? Atmos. Chem. Phys. 2017, 17, 5561–5581. [Google Scholar] [CrossRef] [Green Version]
- Houweling, S.; Aben, I.; Breon, F.M.; Chevallier, F.; Deutscher, N.; Engelen, R.; Gerbig, C.; Griffith, D.; Hungershoefer, K.; Macatangay, R.; et al. The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements. Atmos. Chem. Phys. 2010, 10, 9981–9992. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.; Han, G.; Ma, X.; Shi, T.; Gong, W. A method for estimating the background column concentration of CO2 using the lagrangian approach. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Lin, J.C.; Mitchell, L.; Crosman, E.; Mendoza, D.L.; Buchert, M.; Bares, R.; Fasoli, B.; Bowling, D.R.; Pataki, D.; Catharine, D.; et al. CO2 and carbon emissions from cities: Linkages to air quality, socioeconomic activity, and stakeholders in the Salt Lake city urban area. Bull. Am. Meteorol. Soc. 2018, 99, 2325–2339. [Google Scholar] [CrossRef]
- Churkina, G. The role of urbanization in the global carbon cycle. Front. Ecol. Evol. 2016, 3, 144. [Google Scholar] [CrossRef] [Green Version]
- Pataki, D.E.; Alig, R.J.; Fung, A.S.; Golubiewski, N.E.; Kennedy, C.A.; Mcpherson, E.G.; Nowak, D.J.; Pouyat, R.V.; Romero Lankao, P. Urban ecosystems and the north american carbon cycle. Glob. Chang. Biol. 2006, 12, 2092–2102. [Google Scholar] [CrossRef]
- Crisp, D.; Dolman, H.; Tanhua, T.; McKinley, G.A.; Hauck, J.; Bastos, A.; Sitch, S.; Eggleston, S.; Aich, V. How well do we understand the land-ocean-atmosphere carbon cycle? Rev. Geophys. 2022, 60, e2021RG000736. [Google Scholar] [CrossRef]
- Coutts, A.M.; Beringer, J.; Tapper, N.J. Characteristics influencing the variability of urban CO2 fluxes in melbourne, australia. Atmos. Environ. 2007, 41, 51–62. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Acad.: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Golder, D. Relations among stability parameters in the surface layer. Bound. Layer Meteorol. 1972, 3, 47–58. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel (IPCC) on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wang, Y.; Wang, X.; He, Y.; Li, X.; Keeling, R.F.; Ciais, P.; Heimann, M.; Peng, S.; Chevallier, F.; et al. Causes of slowing-down seasonal CO2 amplitude at Mauna Loa. Glob. Chang. Biol. 2020, 26, 4462–4477. [Google Scholar] [CrossRef]
- Sacks, W.J.; Schimel, D.S.; Monson, R.K.; Braswell, B.H. Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Glob. Chang. Biol. 2006, 12, 240–259. [Google Scholar] [CrossRef]
- De Arellano, J.V.-G.; Gioli, B.; Miglietta, F.; Jonker, H.J.J.; Baltink, H.K.; Hutjes, R.W.A.; Holtslag, A.A.M. Entrainment process of carbon dioxide in the atmospheric boundary layer. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.L.; Parazoo, N.; Brophy, K.; Cui, X.; Jeong, S.; Liu, J.; Keeling, R.; Taylor, T.E.; Gurney, K.; Oda, T.; et al. Simulating estimation of California fossil fuel and biosphere carbon dioxide exchanges combining in situ tower and satellite column observations. J. Geophys. Res. Atmos. 2017, 122, 3653–3671. [Google Scholar] [CrossRef]
- Newman, S.; Jeong, S.; Fischer, M.L.; Xu, X.; Haman, C.L.; Lefer, B.; Alvarez, S.; Rappenglueck, B.; Kort, E.A.; Andrews, A.E.; et al. Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010. Atmos. Chem. Phys. 2013, 13, 4359–4372. [Google Scholar] [CrossRef] [Green Version]
- Bistline, J.; Abhyankar, N.; Blanford, G.; Clarke, L.; Fakhry, R.; McJeon, H.; Reilly, J.; Roney, C.; Wilson, T.; Yuan, M.; et al. Actions for reducing US emissions at least 50% by 2030. Science 2022, 376, 922–924. [Google Scholar] [CrossRef]
- Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Bian, L.; Tang, J.; Gao, Z.; Lu, C.; Schnell, R.C. CO2 monitoring and background mole fraction at Zhongshan station, Antarctica. Atmosphere 2014, 5, 686–698. [Google Scholar] [CrossRef] [Green Version]
- Bares, R.; Mitchell, L.; Fasoli, B.; Bowling, D.R.; Catharine, D.; Garcia, M.; Eng, B.; Ehleringer, J.; Lin, J.C. The Utah Urban Carbon Dioxide (UUCON) and Uintah basin greenhouse gas networks: Instrumentation, data, and measurement uncertainty. Earth Syst. Sci. Data 2019, 11, 1291–1308. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, L.E.; Lin, J.C.; Bowling, D.R.; Pataki, D.E.; Strong, C.; Schauer, A.J.; Bares, R.; Bush, S.E.; Stephens, B.B.; Mendoza, D.; et al. Long-term urban carbon dioxide observations reveal spatial and temporal dynamics related to urban characteristics and growth. Proc. Natl. Acad. Sci. USA 2018, 115, 2912–2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKain, K.; Wofsy, S.C.; Nehrkorn, T.; Eluszkiewicz, J.; Ehleringer, J.R.; Stephens, B.B. Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc. Natl. Acad. Sci. USA 2012, 109, 8423–8428. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Greenfield, E.J. US urban forest statistics, values, and projections. J. For. 2018, 116, 164–177. [Google Scholar] [CrossRef] [Green Version]
- Parker, R.J.; Boesch, H.; Wooster, M.J.; Moore, D.P.; Webb, A.J.; Gaveau, D.; Murdiyarso, D. Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes. Atmos. Chem. Phys. 2016, 16, 10111–10131. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.W.; Fu, D.; Pongetti, T.J.; Newman, S.; Kort, E.A.; Duren, R.; Hsu, Y.K.; Miller, C.E.; Yung, Y.L.; Sander, S.P. Mapping CH4: CO2 ratios in Los Angeles with CLARS-FTS from mount Wilson, California. Atmos. Chem. Phys. 2015, 15, 241–252. [Google Scholar] [CrossRef]
- Huang, W.; Xiao, W.; Zhang, M.; Wang, W.; Xu, J.; Hu, Y.; Hu, C.; Liu, S.; Lee, X. Anthropogenic CH4 emissions in the Yangtze river delta based on a “top-down” method. Atmosphere 2019, 10, 185. [Google Scholar] [CrossRef] [Green Version]
- Tohjima, Y.; Kubo, M.; Minejima, C.; Mukai, H.; Tanimoto, H.; Ganshin, A.; Maksyutov, S.; Katsumata, K.; Machida, T.; Kita, K. Temporal changes in the emissions of CH4 and co from China estimated from CH4/CO2 and CO/CO2 correlations observed at Hateruma island. Atmos. Chem. Phys. 2014, 14, 1663–1677. [Google Scholar] [CrossRef] [Green Version]
- McKain, K.; Down, A.; Raciti, S.M.; Budney, J.; Hutyra, L.R.; Floerchinger, C.; Herndon, S.C.; Nehrkorn, T.; Zahniser, M.S.; Jackson, R.B.; et al. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 1941–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrick, M.F.; Ackley, R.; Sanaie-Movahed, B.; Tang, X.; Phillips, N.G. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments. Environ. Pollut. 2016, 213, 710–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, R.A.; Pacala, S.W.; Winebrake, J.J.; Chameides, W.L.; Hamburg, S.P. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 6435–6440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandt, A.R.; Heath, G.A.; Kort, E.A.; O’Sullivan, F.; Pétron, G.; Jordaan, S.M.; Tans, P.; Wilcox, J.; Gopstein, A.M.; Arent, D.; et al. Methane leaks from North American natural gas systems. Science 2014, 343, 733–735. [Google Scholar] [CrossRef] [Green Version]
- Brandt, A.R.; Heath, G.A.; Cooley, D. Methane leaks from natural gas systems follow extreme distributions. Environ. Sci. Technol. 2016, 50, 12512–12520. [Google Scholar] [CrossRef]
- Ren, X.; Salmon, O.E.; Hansford, J.R.; Ahn, D.; Hall, D.; Benish, S.E.; Stratton, P.R.; He, H.; Sahu, S.; Grimes, C.; et al. Methane emissions from the Baltimore-Washington area based on airborne observations: Comparison to emissions inventories. J. Geophys. Res. Atmos. 2018, 123, 8869–8882. [Google Scholar] [CrossRef]
- Anderson, D.C.; Lindsay, A.; DeCarlo, P.F.; Wood, E.C. Urban emissions of nitrogen oxides, carbon monoxide, and methane determined from ground-based measurements in Philadelphia. Environ. Sci. Technol. 2021, 55, 4532–4541. [Google Scholar] [CrossRef]
Year | Season | Correlation CO:CO2 Ratio (ppb ppm−1) | R2 |
---|---|---|---|
2017 | Winter | 9.7 ± 0.4 | 0.9 |
Summer | 2.0 ± 0.2 | 0.4 | |
Fall | 2.8 ± 0.4 | 0.7 | |
Spring | 5.3 ± 0.4 | 0.9 | |
2018 | Winter | 8.7 ± 0.5 | 0.8 |
Summer | 2.6 ± 0.5 | 0.4 | |
Fall | 4.0 ± 0.4 | 0.8 | |
Spring | 7.4 ± 0.7 | 0.7 | |
2019 | Winter | 7.3 ± 0.6 | 0.9 |
Spring | 3.2 ± 0.2 | 0.6 |
Anthropogenic | Biogenic | |||||
---|---|---|---|---|---|---|
Year | Average | Maximum | Minimum | Average | Maximum | Minimum |
2017 | 9.02 ± 4.46 | 20.17 | 3.39 | −0.65 ± 3.44 | 5.01 | −8.59 |
2018 | 9.90 ± 4.94 | 19.94 | 3.26 | 0.96 ± 2.66 | 7.84 | −3.48 |
2019 | 7.84 ± 4.33 | 15.30 | 1.72 | 0.17 ± 2.27 | 6.48 | −3.09 |
Anthropogenic | Biogenic | |||||
---|---|---|---|---|---|---|
Year | Average | Maximum | Minimum | Average | Maximum | Minimum |
2017 | 8.12 ± 3.94 | 16.68 | 1.30 | −6.10 ± 5.89 | 5.41 | −13.68 |
2018 | 5.74 ± 2.05 | 9.81 | 1.63 | −6.11 ± 4.94 | 6.63 | −13.22 |
2019 | 7.48 ± 3.22 | 13.65 | 2.14 | −3.25 ± 4.65 | 4.58 | −14.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gichuhi, W.K.; Gamage, L.P. Efficacy of the CO Tracer Technique in Partitioning Biogenic and Anthropogenic Atmospheric CO2 Signals in the Humid Subtropical Eastern Highland Rim City of Cookeville, Tennessee. Atmosphere 2023, 14, 208. https://doi.org/10.3390/atmos14020208
Gichuhi WK, Gamage LP. Efficacy of the CO Tracer Technique in Partitioning Biogenic and Anthropogenic Atmospheric CO2 Signals in the Humid Subtropical Eastern Highland Rim City of Cookeville, Tennessee. Atmosphere. 2023; 14(2):208. https://doi.org/10.3390/atmos14020208
Chicago/Turabian StyleGichuhi, Wilson K., and Lahiru P. Gamage. 2023. "Efficacy of the CO Tracer Technique in Partitioning Biogenic and Anthropogenic Atmospheric CO2 Signals in the Humid Subtropical Eastern Highland Rim City of Cookeville, Tennessee" Atmosphere 14, no. 2: 208. https://doi.org/10.3390/atmos14020208
APA StyleGichuhi, W. K., & Gamage, L. P. (2023). Efficacy of the CO Tracer Technique in Partitioning Biogenic and Anthropogenic Atmospheric CO2 Signals in the Humid Subtropical Eastern Highland Rim City of Cookeville, Tennessee. Atmosphere, 14(2), 208. https://doi.org/10.3390/atmos14020208