Pollution Levels for Airborne Hexavalent Chromium of PM2.5 in Typical Cities of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Collection
2.2. Extraction and Analysis of Total Chromium and Hexavalent Chromium
2.3. Quality Control and Quality Assurance
2.4. Backward Trajectory Potential Source Contribution Functions(PSCF) and Concentration Weight Trajectory(CWT) Analysis
3. Results
3.1. Ambient Cr(VI) Concentrations in Sampling Sites
3.2. Regional Transport
3.3. The Ratio of Cr(VI)/Cr in Ambient PM2.5
3.4. The Regional Concentration of Cr(VI) in Ambient PM2.5 in China
3.5. Comparison of Cr(VI) Content in China with Other Countries
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Padarauskas, A.; Schwedt, G. Simultaneous ion-pair chromatography of inorganic anions and cations using on-column derivatization with chelating agents and UV detection. Fresenius J. Anal. Chem. 1995, 351, 708–713. [Google Scholar] [CrossRef]
- Huang, S.; Lu, Q.; Ma, X.; Chen, Y.; Maimaiti, R. A Facilely Synthesized Tourmaline– Biochar Composite for Enhanced Removal of Cr(VI) from Aqueous Solution. Atmosphere 2022, 13, 1643. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Standard Operation Procedure for the Determination of Hexavalent Chromium in Ambient Air Analyzed by Ion Chromatography (IC); Work Assignment 5-03; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2006.
- Kotaś, J.; Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263–283. [Google Scholar] [CrossRef] [PubMed]
- Seigneur, C.; Constantinou, E. Chemical kinetic mechanism for atmospheric chromium. Environ. Sci. Technol. 1995, 29, 222–231. [Google Scholar] [CrossRef]
- Wietlik, R.; Molik, A.; Molenda, M.; Trojanowska, M.; Siwiec, J. Chromium(III/VI) speciation in urban aerosol. Atmos. Environ. 2011, 45, 1364–1368. [Google Scholar] [CrossRef]
- Samad, A.; Arango, K.; Alvarez Florez, D.; Chourdakis, I.; Vogt, U. Assessment of Coarse, Fine, and Ultrafine Particles in S-Bahn Trains and Underground Stations in Stuttgart. Atmosphere 2022, 13, 1875. [Google Scholar] [CrossRef]
- Shrestha, S.; Peel, M.C.; Moore, G.A.; Gaydon, D.S.; Poulton, P.L.; Dutta, S.K. Effect of Anthropogenic Aerosols on Wheat Production in the Eastern Indo-Gangetic Plain. Atmosphere 2022, 13, 1896. [Google Scholar] [CrossRef]
- Pumure, I.; Sithole, S.D.; Kahwai, S.G.T. Characterisation of Particulate Matter Emissions from the Zimbabwe Mining and Smelting Company (Zimasco) Kwekwe Division (Zimbabwe): A Ferrochrome Smelter. Environ. Monit. Assess. 2003, 87, 111–121. [Google Scholar] [CrossRef]
- Singh, D.K.; Gupta, T. Role of transition metals with water soluble organic carbon in the formation of secondary organic aerosol and metallo-organics in PM1 sampled during post monsoon and pre-winter time. J. Aerosol Sci. 2016, 94, 56–69. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Wang, Z.; Ding, K.; Gao, J.; Chai, F.; Fu, C. Amplified transboundary transport of haze by aerosol–boundary layer interaction in China. Nat. Geosci. 2020, 13, 428–434. [Google Scholar] [CrossRef]
- Zhao, B.; Wu, W.; Wang, S.; Xing, J.; Chang, X.; Liou, K.N.; Jiang, J.H.; Gu, Y.; Jang, C.; Fu, J.S.; et al. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing–Tianjin–Hebei region. Atmos. Chem. Phys. 2017, 17, 12031–12050. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Fan, Z.; Lioy, P. Characterization of Chromium Species Distribution as a Function of Particle Size in Chromium Waste Laden Soils. Epidemiology 2008, 19, 1489–1500. [Google Scholar] [CrossRef]
- Pettine, M.; Capri, S. Digestion treatments and risks of Cr(III)–Cr(VI) interconversions during Cr(VI) determination in soils and sediments—A review. Anal. Chim. Acta 2005, 540, 231–238. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines for Europe; WHO: Geneva, Switzerland, 2000; pp. 125–162. [Google Scholar]
- GB3095-2012; Ambient Air Quality Standards. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2012.
- Swift, P.; Howell, M.; Tedder, D. Collection and Analysis of Hexavalent Chromium in Ambient Air. Eastern Research Group. 2007. Available online: https://www.epa.gov/sites/default/files/2021-03/documents/hexavalent-chromium-paper-06.pdf (accessed on 12 January 2023).
- Huang, L.; Fan, Z.T.; Chang, H.Y.; Hopke, P.K.; Lioy, P.J.; Buckley, B.T.; Lin, L.; Ma, Y. Interconversion of Chromium Species During Air Sampling: Effects of O3, NO2, SO2, Particle Matrices, Temperature, and Humidity. Environ. Sci. Technol. 2013, 47, 4408–4415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, J.W.; Nordstrom, D.K. Critical Evaluation and Selection of Standard State Thermodynamic Properties for Chromium Metal and Its Aqueous Ions, Hydrolysis Species, Oxides, and Hydroxides. J. Chem. 1998, 43, 895–918. [Google Scholar] [CrossRef]
- Ball, J.W. Thermodynamic and Isotopic Systematics of Chromium Chemistry. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 1996. [Google Scholar]
- Baetjer, A.M.; Lowney, J.F.; Steffee, H.; Budacz, V. Effect of chromium on incidence of lung tumors in mice and rats. AMA Arch. Ind. Health 1959, 20, 124–135. [Google Scholar]
- Baetjer, A.M.; Damron, C.M.; Budacz, V. The distribution and retention of chromium in men and animals. AMA Arch. Ind. Health 1959, 20, 136–150. [Google Scholar]
- Vigliani, E.C.; Zurlo, N. Experiences of the Clinica del Lavoro with Maximum Allowable Concentrations of Industrial Poisons. Arch. Gewerbepath. Gewerbehyg. 1955, 13, 528–534. [Google Scholar]
- U.S. National Institute for Occupational Safety and Health. Chromium,Hexavelent by IonChromatography. OSHAID-215; OSHA Salt Lake Technical Center. 1998. Available online: https://www.osha.gov/sites/default/files/methods/id215_v2.pdf (accessed on 12 January 2023).
- U.S. Environmental Protection Agency. Environmental Monitoring Near Industrial Sites, Chromium; US NTIS PB-271 881; U.S. Environmental Protection Agency: Washington, DC, USA, 1977.
- U.S. Environmental Protection Agency. Reviews of the Environmental Effects of Pollutants. III. Chromium; US EPA 600/1-78-023; U.S. Environmental Protection Agency: Washington, DC, USA, 1978.
- U.S. Environmental Protection Agency. Methods for the Chemical Analysis of Water and Wastes; US EPA-600/4-79-020; U.S. Environmental Protection Agency: Washington, DC, USA, 1983.
- Xie, C.; Yang, W.; Zhang, W.J.; Li, W.; Han, B.; Wang, X.H.; Zhao, X.Y.; Chen, M.D.; Bai, Z.P. Pollution characteristics and health risk assessment of heavy metals in PM2.5 in 23 Chinese cities. J. Environ. Health 2019, 36, 693–702. [Google Scholar] [CrossRef]
- Zou, T.; Kang, W.; Zhang, J.; Wang, M.; Zhong, B. Concentrations and Distribution Characteristics of Atmospheric Heavy Metals in Urban Areas of China. Res. Environ. Sci. 2015, 28, 1053–1061. [Google Scholar] [CrossRef]
- Tan, J.H.; Duan, J.C. Heavy metals in aerosol in China: Pollution, sources, and control strategies. J. Grad. Univ. Chin. Acad. Sci. 2013, 30, 145–155. [Google Scholar] [CrossRef]
- Wang, L.X.; Li, H.; Zhang, W.J.; Qi, J.Y.; Tian, H.Z.; Huang, K.; Chen, D.S.; Guo, J.H. Regional Pollution Characteristics of Heavy Metals in PM2.5. Res. Environ. Sci. 2021, 34, 849–862. [Google Scholar] [CrossRef]
- Heitkemper, D.; Vela, N.; Stewart, K.; Westphal, C. Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001, 16, 299–306. [Google Scholar] [CrossRef]
- Marlow, D.; Wang, J.; Tj, W.; Ashley, K. Field test of a portable method for the determination of hexavalent chromium in workplace air. Am. Lab. 2000, 32, 26. [Google Scholar] [CrossRef]
- Dao, X.; Lu, Y.B.; Teng, E.J.; Zhang, L.L.; Wang, C.; Li, L.H. Determination of hexavalent chromium in atmospheric particles PM2.5 and PM10 by ion chromatography with inductively coupled plasma mass spectrometry. Chin. J. Chromatogr. 2014, 32, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Ashley, K.; Howe, A.M.; Demange, M.; Nygren, O. Sampling and analysis considerations for the determination of hexavalent chromium in workplace air. J. Environ. Monit. 2003, 5, 707–716. [Google Scholar] [CrossRef]
- Rai, D.; Moore, D.A.; Hess, N.J.; Rao, L.; Clark, S.B. Chromium(III) hydroxide solubility in the aqueous Na+-OH--H2PO4--HPO42--PO43--H2O system: A thermodynamic model. J. Solut. Chem. 2004, 33, 1213–1242. [Google Scholar] [CrossRef]
- Cannon, R.; Earley, J. On the Effect of trans Ligands on the Rate of Some Bridged Electron-Transfer Reactions 1. J. Am. Chem. Soc. 1965, 87, 5264. [Google Scholar] [CrossRef]
- Inoue, Y.; Sakai, T.; Kumagai, H. Simultaneous determination of chromium(III) and chromium(VI) by ion chromatography with inductively coupled plasma mass spectrometry. J. Chromatogr. A 1995, 706, 127–136. [Google Scholar] [CrossRef]
- Wang, L.; Guo, J.; Li, H.; Zhang, W.; Wang, H. Verification and Optimization of a Sampling and Analytical Method to Measure Cr(VI) in Ambient PM2.5. Res. Environ. Sci. 2021, 4, 1–13. (In Chinese) [Google Scholar] [CrossRef]
- HJ 168-2010; Environmental Monitoring—Technical Guideline on Drawing and Revising Analytical Method Standards. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2010.
- HJ 799-2015; Ambient Air-Determination of Hexavalent Chromium (VI)—Ion Chromatography with Post-Column Method. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2015.
- HJ 777-2015; Ambient Air and Waste Gas from Stationary Sources Emission—Determination of Metal Elements Particulate Matter-Inductively Coupled Plasma Optical Emission Spectrometry. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2015.
- Meng, Q.; Fan, Z.; Buckley, B.; Lin, L.; Huang, L.; Yu, C.-H.; Stiles, R.; Bonanno, L. Development and evaluation of a method for hexavalent chromium in ambient air using IC-ICP-MS. Atmos. Environ. 2011, 45, 2021–2027. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, X.; Shi, H.; Cai, X.H.; Song, Y. Transport pathways and potential sources of PM10 in Beijing. Atmos. Environ. 2011, 45, 594–604. [Google Scholar] [CrossRef]
- Dong, X.L.; Zhang, L.Y.; Liu, D.M.; Che, R.J.; Yuan, Y.S. Source tracing of biomarkers in the organic pollutants from atmospheric particulates in Beijing city during Summer. J. Univ. Chin. Acad. Sci. 2007, 24, 601–611. [Google Scholar] [CrossRef]
- Di, Y.; Zhou, R.; Yu, Y. Characteristic and source apportionment of hexavalent chromiumn in particulate matter in Beijing(in Chinese). Environ. Chem. 2014, 33, 2117–2122. [Google Scholar] [CrossRef]
- Cui, Y.; Ji, D.; Chen, H.; Gao, M.; Maenhaut, W.; He, J.; Wang, Y. Characteristics and Sources of Hourly Trace Elements in Airborne Fine Particles in Urban Beijing, China. Geophys. Res. Atmos. 2019, 124, 11595–11613. [Google Scholar] [CrossRef]
- Cheng, H.G.; Zhou, T.; Li, Q.; Lu, L.; Lin, C.Y. Anthropogenic chromium emissions in china from 1990 to 2009. PLoS ONE 2014, 9, e87753. [Google Scholar] [CrossRef]
- Tian, H.Z.; Liu, K.; Zhou, J.; Lu, L.; Hao, J.; Qiu, P.; Gao, J.; Zhu, C.; Wang, K.; Hua, S. Atmospheric Emission Inventory of Hazardous Trace Elements from China’s Coal-Fired Power Plants-Temporal Trends and Spatial Variation Characteristics. Environ. Sci. Technol. 2014, 48, 3575–3582. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Cheng, S. Characteristics and Source Apportionment of PM2.5 and O3 during Winter of 2013 and 2018 in Beijing. Atmosphere 2020, 11, 1324. [Google Scholar] [CrossRef]
- Zong, Z.; Wang, X.; Tian, C.; Chen, Y.; Fu, S.-F.; Qu, L.; Ji, L.; Li, J.; Zhang, G. PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China. Atmos. Res. 2017, 203, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.W.; Hipfner, J.C. Airborne Hexavalent Chromium in Southwestern Ontario. J. Air Waste Manag. Assoc. 1997, 47, 905–910. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, P.; Ricks, R.; Ripple, S.; Paustenbach, D. Field evaluation of a sampling and analytical method for environmental levels of airborne hexavalent chromium. Am. Ind. Hyg. Assoc. J. 1992, 53, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Nusko, R.; Heumann, K.G. Cr(III)/Cr(VI) speciation in aerosol particles by extractive separation and thermal ionization isotope dilution mass spectrometry. Fresenius J. Anal. Chem. 1997, 357, 1050–1055. [Google Scholar] [CrossRef]
- Gao, Y. The Research about the Distribution and Modality Analysis of the Chromium in the Dustfall on the Campus of Chengdu University of Technology. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2007. (In Chinese). [Google Scholar]
- Jin, X.; Fan, J.; Niu, H.; Ling, P.; Yu, Q. Analysis of Sources and Concentrations of Heavy Metal Contents in PM10 over a Four-Season Cycle in a Heavily Industrialised City in China. Pol. J. Environ. Stud. 2019, 28, 3227–3234. [Google Scholar] [CrossRef] [PubMed]
- Huggins, F.E.; Shah, N.; Huffman, G.P.; Kolker, A.; Crowley, S.; Palmer, C.A.; Finkelman, R.B. Mode of occurrence of chromium in four US coals. Fuel Process. Technol. 2000, 63, 79–92. [Google Scholar] [CrossRef]
- Turk, K.; Rietschel, R. Effect of processing cement to concrete on hexavalent chromium levels. Contact Dermat. 1993, 28, 209–211. [Google Scholar] [CrossRef]
- Cui, X.T.; Luan, W.L.; Li, S.M.; Song, Z.F. An analysis of the sources of heavy metals in atmospheric dustfall of Shijiazhuang City. Geol. China 2012, 39, 1108–1115. [Google Scholar] [CrossRef]
- Talebi, S.M. Determination of total and hexavalent chromium concentrations in the atmosphere of the city of Isfahan. Environ. Res. 2003, 92, 54–56. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. National Monitoring Programs Annual Report (UATMP, NATTS, CSATAM); NC 27560, 1203; U.S. Environmental Protection Agency: Wahington, DC, USA, 2013.
- Kang, B.-W.; Kim, J.-H.; Lee, H.-S.; Hong, J.-H.; Kim, R.-H.; Seo, Y.-K.; Han, J.; Baek, K.-M.; Kim, M.-J.; Baek, S.-O. Distribution of Airborne Hexavalent Chromium Concentrations in Large Industrial Complexes in Korea. Asian J. Atmos. Environ. 2016, 10, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Tirez, K.; Silversmit, G.; Bleux, N.; Adriaenssens, E.; Roekens, E.; Servaes, K.; Vanhoof, C.; Vincze, L.; Berghmans, P. Determination of hexavalent chromium in ambient air: A story of method induced Cr(III) oxidation. Atmos. Environ. 2011, 45, 5332–5341. [Google Scholar] [CrossRef]
- Li, Y.; Pradhan, N.; Foley, R.; Low, G. Selective determination of airborne hexavalent chromium using inductively coupled plasma mass spectrometry. Talanta 2002, 57, 1143–1153. [Google Scholar] [CrossRef]
- Borai, E.H.; El-Sofany, E.A.; Abdel-Halim, A.S.; Soliman, A.A. Speciation of hexavalent chromium in atmospheric particulate samples by selective extraction and ion chromatographic determination. TrAC Trends Anal. Chem. 2002, 21, 741–745. [Google Scholar] [CrossRef]
- Khlystov, A.; Ma, Y. An on-line instrument for mobile measurements of the spatial variability of hexavalent and trivalent chromium in urban air. Atmos. Environ. 2006, 40, 8088–8093. [Google Scholar] [CrossRef]
Storage Time/d | Percent Recovery |
---|---|
1 | 97.75% |
2 | 95.8% |
3 | 96% |
4 | 94.64% |
5 | 90.03% |
… | … |
21 | 97.75% |
22 | 93.85% |
23 | 92.35% |
24 | 87.15% |
25 | 93.03% |
26 | 103.7% |
27 | 89.17% |
28 | 92.71% |
29 | 97.37% |
30 | 38.53% |
31 | 28.42% |
32 | 29.55% |
33 | 17.56% |
34 | 19.03% |
Parameters | Values |
---|---|
Power | 1300 |
Gas flow | 0.7 L/min |
Auxiliary gas flow | 0.2 L/min |
Cooling air flow | 15 L/min |
Dwell time | 10 s |
Parameters | Value | |
---|---|---|
IC | Chromatographic column | IonPac AG7, Guard, 4 × 50 mm |
Sample volume | 25 μL | |
Eluent flow | 1 min/L | |
Pump pressure | 2.9 MPa | |
ICP-MS | RF power | 1500 w |
Cooling argon gas | 14 L/min | |
Auxiliary argon gas | 0.8 L/min | |
Nebulizer argon gas | 1.0 L/min | |
Dwell time | 0.1 s | |
Duration | 180 s | |
Measurement mode | KED |
Type | Number of Spiked Samples | Type of Spiked Samples | Mean | SD | RSD(%) | Percent Recovery |
---|---|---|---|---|---|---|
Cr | 20 | 10 ng Cr standard solution | 8.76 ng | 0.748 ng | 8.5 | 87.63% |
Cr | 5 | 0.1 mg standard soil | 0.09 mg | 0.733 mg | 8.1 | 90.35% |
Cr(VI) | 25 | 5 ng Cr(VI) standard solution | 4.64 ng | 0.367 ng | 7.8 | 92.78% |
Concentration Level of Cr (ng/m3) | Cr(VI) (ng/m3) | Cr(VI)/Cr |
---|---|---|
8–14 | 0.159 | 0.0160 |
6–7.9 | 0.145 | 0.0215 |
4–5.9 | 0.156 | 0.0327 |
2–3.9 | 0.126 | 0.0445 |
1–1.9 | 0.093 | 0.0657 |
<1 | 0.069 | 0.1416 |
Location | Cr(ng/m3) | Cr(VI) (ng/m3) | Cr(VI)/Cr | Study |
---|---|---|---|---|
Poland | 28.398 | 6.240 | 0.377 | Wietlik et al. [6] |
Germany | 1.047 | 0.800 | 0.763 | Nusko and Heumann [54] |
Egypt | 3.3876 | 0.820 | 0.240 | Borai and El-Sofany [65] |
America | 2.680 | 0.024 | 0.008 | EPA [61] |
Iran | 30.130 | 6.880 | 0.241 | Talebi et al. [60] |
Belgium | 65 | 3.200 | 0.044 | Tirez et al. [63] |
Republic of Korea | 13.244 | 0.381 | 0.028 | Kang et al. [62] |
Canada | 0.550 | Bell et al. [52] | ||
Australia | 0.080–0.870 | Li et al. [64] | ||
America | 0.500 | Khlystov et al. [66] | ||
Beijing, China | 3.831 | 0.140 | 0.076 | This study |
Qingdao, China | 3.707 | 0.091 | 0.041 | This study |
China | 20.300 | 0.520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Guo, J.; Zhang, W.; Chen, B.; Wang, H.; Li, H. Pollution Levels for Airborne Hexavalent Chromium of PM2.5 in Typical Cities of China. Atmosphere 2023, 14, 209. https://doi.org/10.3390/atmos14020209
Wang L, Guo J, Zhang W, Chen B, Wang H, Li H. Pollution Levels for Airborne Hexavalent Chromium of PM2.5 in Typical Cities of China. Atmosphere. 2023; 14(2):209. https://doi.org/10.3390/atmos14020209
Chicago/Turabian StyleWang, Luxi, Jinghua Guo, Wenjie Zhang, Bin Chen, Han Wang, and Hui Li. 2023. "Pollution Levels for Airborne Hexavalent Chromium of PM2.5 in Typical Cities of China" Atmosphere 14, no. 2: 209. https://doi.org/10.3390/atmos14020209
APA StyleWang, L., Guo, J., Zhang, W., Chen, B., Wang, H., & Li, H. (2023). Pollution Levels for Airborne Hexavalent Chromium of PM2.5 in Typical Cities of China. Atmosphere, 14(2), 209. https://doi.org/10.3390/atmos14020209