Dynamics of the Magnetotail Plasma Sheet Current
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Magnetic Flux Transport
3.2. Current Disruption
3.3. Plasma Instabilities
3.3.1. Tearing Instability
3.3.2. Cross-Field Current Instability
3.4. Auroral Beads
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lui, A.T.Y. Electric Current Approach to Magnetospheric Dynamics and the Distinction between Current Disruption And Magnetic Reconnection, Magnetospheric Current Systems; Ohtani, S., Fujii, R., Hesse, M., Lysak, R.L., Eds.; AGU Monograph; AGU: Washington, DC, USA, 2000; Volume 118, pp. 31–40. [Google Scholar]
- Alfvén, H. Electrical currents in cosmic plasmas. Rev. Geophys. 1977, 15, 271. [Google Scholar] [CrossRef] [Green Version]
- Yoon, P.H.; Lui, A.T.Y. Nonlinear analysis of generalized cross-field current instability. Phys. Fluids B 1993, 5, 836–853. [Google Scholar] [CrossRef]
- Yoon, P.H.; Lui, A.T.Y.; Chang, C. Lower-hybrid-drift instability operative in the geomagnetic tail. Phys. Plasmas 1994, 1, 3033–3043. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Current disruption in the Earth’s magnetosphere: Observations and models. J. Geophys. Res. 1996, 101, 13067–13088. [Google Scholar] [CrossRef]
- Akasofu, S.-I. Electric current approach studying both auroral substorms and solar flares together. Front. Astron. Space Sci. 2020, 7, 4. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. Time scale for magnetic field changes after sub-storm onset: Constraints from dimensional analysis. In Physics of Space Plasmas; Chang, T., Jasperse, J.R., Eds.; MIT Center for Geo/Cosmo Plasma Physics: Cambridge, MA, USA, 1996; pp. 553–560. [Google Scholar]
- Vasyliunas, V.M. Time evolution of electric fields and currentsand the generalized Ohm’s law. Ann. Geophys. 2005, 23, 1347–1354. [Google Scholar] [CrossRef] [Green Version]
- Parker, E.N. Tutorial: Newton, Maxwell, and Magnetospheric Physics, Magnetospheric Current Systems; Ohtani, S., Fujii, R., Hesse, M., Lysak, R.L., Eds.; AGU Monograph 2000; AGU: Washington, DC, USA, 2000; Volume 118, pp. 1–10. [Google Scholar]
- Lui, A.T.Y.; Chapman, S.C.; Liou, K.; Newell, P.T.; Meng, C.-I.; Brittnacher, M.; Parks, G.K. Is the dynamic magnetosphere an avalanching system? Geophys. Res. Lett. 2000, 27, 911–914. [Google Scholar] [CrossRef] [Green Version]
- Lui, A.T.Y. Time development of electric fields and currents in space plasmas. Ann. Geophys. 2006, 24, 1137–1143. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Reduction of the cross-tail current during near-Earth dipolarization with multi-satellite observations. J. Geophys. Res. 2011, 116, A12239. [Google Scholar] [CrossRef]
- Sato, T.; Iijima, T. Primary sources of large-scale Birkeland currents. Space Sci. Rev. 1979, 24, 347. [Google Scholar] [CrossRef]
- Hasegawa, A.; Sato, T. Generation of Field Aligned Current during Substorm, Dynamics of the Magnetosphere; Springer: Dordrecht, The Netherlands, 1979. [Google Scholar]
- Haerendel, G. Field-aligned currents in the Earth’s magnetosphere. Geophys. Monogr. Ser. 1990, 58, 539. [Google Scholar]
- Akasofu, S.I. Polar and Magnetosphere Substorms; Astrophysics & Space Science Library: Dordrecht, The Netherlands, 1968; Volume 11, ISBN 90-277-0108-3. [Google Scholar]
- Rostoker, G.; Akasofu, S.-I.; Foster, J.; Greenwald, R.; Kamide, Y.; Kawasaki, K.; Lui, A.; McPherron, R.; Russell, C. Magnetospheric substorms-definition and signatures. J. Geophys. Res. 1980, 85, 1663–1668. [Google Scholar] [CrossRef]
- Nakamura, R.; Baumjohann, W.; Klecker, B.; Bogdanova, Y.; Balogh, A.; Rème, H.; Bosqued, J.M.; Dandouras, I.; Sauvaud, J.A.; Glassmeier, K.-H.; et al. Motion of the dipolarization front during a flow burst event observed by Cluster. Geophys. Res. Lett. 2002, 29, 1942. [Google Scholar] [CrossRef] [Green Version]
- Runov, A.; Angelopoulos, V.; Sitnov, M.I.; Sergeev, V.A.; Bonnell, J.; McFadden, J.P.; Larson, D.; Glassmeier, K.-H.; Auster, U. THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 2009, 36, L14106. [Google Scholar] [CrossRef] [Green Version]
- Sergeev, V.; Angelopoulos, V.; Apatenkov, S.; Bonnell, J.; Ergun, R.; Nakamura, R.; McFadden, J.; Larson, D.; Runov, A. Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys. Res. Lett. 2009, 36, L21105. [Google Scholar] [CrossRef]
- Zhou, X.-Z.; Angelopoulos, V.; Sergeev, V.; Runov, A. Accelerated ions ahead of earthward propagating dipolarization fronts. J. Geophys. Res. 2010, 115, A00103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-J.; Angelopoulos, V.; Runov, A.; Zhou, X.-Z.; Bonnell, J.; McFadden, J.P.; Larson, D.; Auster, U. Current carriers near dipolarization fronts in the magnetotail: A THEMIS event study. J. Geophys. Res. 2011, 116, A00I20. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.S.; Khotyaintsev, Y.V.; André, M.; Vaivads, A. Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophys. Res. Lett. 2011, 38, L16104. [Google Scholar] [CrossRef]
- Lyons, L.R.; Nishimura, Y.; Xing, X.; Runov, A.; Angelopoulos, V.; Donovan, E.; Kikuchi, T. Coupling of dipolarization front flow bursts to substorm expansion phase phenomena within the magnetosphere and ionosphere. J. Geophys. Res. 2012, 117, A02212. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.Y.; Zhou, M.; Deng, X.H.; Yuan, Z.G.; Pang, Y.; Wei, Q.; Su, W.; Li, H.M.; Wang, Q.Q. Kinetic structure and wave properties associated with sharp dipolarization front observed by Cluster. Ann. Geophys. 2012, 30, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.; Goldstein, M.L.; Moore, T.E.; Walsh, B.M.; Baishev, D.G.; Moiseyev, A.V.; Shevtsov, B.M.; Yumoto, K. Atailward moving current sheet normal magnetic field front followed by an earthward moving dipolarization front. J. Geophys. Res. Space Physics. 2014, 119, 5316–5327. [Google Scholar] [CrossRef]
- Liu, J.; Angelopoulos, V.; Runov, A.; Zhou, X.-Z. On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets. J. Geophy. Res. Space Physics. 2013, 118, 2000–2020. [Google Scholar] [CrossRef]
- Liu, J.; Angelopoulos, V.; Zhou, X.-Z.; Runov, A. Magnetic flux transport by dipolarizing flux bundles. J. Geophy. Res. Space Physics. 2014, 119, 909–926. [Google Scholar] [CrossRef]
- Runov, A.; Angelopoulos, V.; Zhou, X.-Z.; Zhang, X.-J.; Li, S.; Plaschke, F.; Bonnell, J. A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. 2011, 116, A05216. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Dipolarization fronts and magnetic flux transport. Geosci. Lett. 2015, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Angelopoulos, V.; Kennel, C.F.; Coroniti, F.V.; Pellat, R.; Kivelson, M.G.; Walker, R.J.; Russell, C.T.; Baumjohann, W.; Feldman, W.C.; Gosling, J.T. Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 1994, 99, 21257–21280. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.H.; Liu, J.; Owen, C.J.; Forsyth, C.; Rae, I.J.; Pu, Z.Y.; Fu, H.S.; Zhou, X.-Z.; Shi, Q.Q.; Du, A.M.; et al. A physical explanation for the magnetic decrease ahead of dipolarization fronts. Ann. Geophys. 2015, 33, 1301–1309. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Zanetti, L.J.; Lopez, R.E.; McEntire, R.W.; Potemra, T.A.; Yumoto, K. Disruption of the magnetotail current sheet observed by AMPTE/CCE. Geophys. Res. Lett. 1987, 14, 1019–1022. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Cross-tail current evolution during substorm depolarization. Ann. Geophys. 2013, 31, 1131–1142. [Google Scholar] [CrossRef] [Green Version]
- Lui, A.T.Y. Potential plasma instabilities for substorm expansion onset. Space Sci. Rev. 2004, 113, 127–206. [Google Scholar] [CrossRef]
- Pritchett, P.L.; Coroniti, F.V. Structure and consequences of the kinetic ballooning/interchange instability in the magnetotail. J. Geophys. Res. Space Physics. 2013, 118, 146–159. [Google Scholar] [CrossRef]
- Torbert, R.B.; Burch, J.L.; Phan, T.D.; Hesse, M.; Argall, M.R.; Shuster, J.; Ergun, R.E.; Alm, L.; Nakamura, R.; Genestreti, K.J.; et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science 2018, 362, 1391–1395. [Google Scholar] [CrossRef] [Green Version]
- Lui, A.T.Y.; Consolini, G. Substorm Disturbance Propagation from a Two-Dimensional Cellular Automaton Model, Multiscale Coupling of Sun-Earth Processes; Lui, A.T.Y., Kamide, Y., Consolini, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 357–364. [Google Scholar]
- Consolini, G.; Kretzschmar, M.; Lui, A.T.Y.; Zimbardo, G.; Macek, W.M. On the magnetic field fluctuations during magnetospheric tail current disruption: A statistical approach. J. Geophys. Res. 2005, 110, A07202. [Google Scholar] [CrossRef] [Green Version]
- Zelenyi, L.M.; Delcourt, D.C.; Malova, H.V.; Sharma, A.S. “Aging” of the magnetotail thin current sheets. Geophys. Res. Lett. 2002, 29, 49-1–49-4. [Google Scholar] [CrossRef]
- Zelenyi, L.M.; Malova, H.V.; Popov, V.Y.; Delcourt, D.; Sharma, A.S. Nonlinear equilibrium structure of thin currents sheets: Influence of electron pressure anisotropy. Nonlinear Process. Geophys. 2004, 11, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Grigorenko, E.E.; Zelenyi, L.M.; DiBraccio, G.; Ermakov, V.N.; Shuvalov, S.D.; Malova, H.V.; Poppov, V.Y.; Halekas, J.S.; Mitchell, D.J.; Dubinin, E. Thin current sheets of sub-ion scales observed by MAVEN in the Martian magnetotail. Geophys. Res. Lett. 2019, 46, 6214–6222. [Google Scholar] [CrossRef]
- Büchner, J.; Zelenyi, L.M. Regular and chaotic charged particle motion in magnetotail like field reversals: 1. Basic theory of trapped motion. J. Geophys. Res. 1989, 94, 11821–11842. [Google Scholar] [CrossRef]
- Zelenyi, L.M.; Malova, H.V.; Leonenko, M.V.; Grigorenko, E.E.; Popov, V.Y. Equilibrium configurations of super-thin current sheets in space plasma: Characteristic scaling of multilayer structures. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030881. [Google Scholar] [CrossRef]
- Coppi, B.; Laval, G.; Pellat, R. Dynamics of the geomagnetic tail. Phys. Rev. Lett. 1966, 16, 1207–1210. [Google Scholar] [CrossRef]
- Schindler, K. A theory of the substorm mechanism. J. Geophys. Res. 1974, 79, 2803–2810. [Google Scholar] [CrossRef]
- Pellat, R.; Coroniti, F.V.; Pritchett, P.L. Does ion tearing exist? Geophys. Res. Lett. 1991, 18, 143–146. [Google Scholar] [CrossRef]
- Brittnacher, M.; Quest, K.B.; Karimabadi, H. A study of the effect of pitch angle and spatial diffusion on tearing instability using a new finite element based linear code. J. Geophys. Res. 1998, 103, 4587–4596. [Google Scholar] [CrossRef]
- Sitnov, M.I.; Schindler, K. Tearing stability of a multiscale magnetotail current sheet. Geophys. Res. Lett. 2010, 37, 8. [Google Scholar] [CrossRef]
- Lui, A.T.Y.; Chang, C.-L.; Mankofsky, A.; Wong, H.-K.; Winske, D. A cross-field current instability for substorm expansions. J. Geophys. Res. 1991, 96, 11389–11401. [Google Scholar] [CrossRef] [Green Version]
- Henderson, M.G. Implications of Viking Imager Results for Substorm Models; University of Calgary: Calgary, AB, Canada, 1994. [Google Scholar]
- Donovan, E.; Liu, W.; Liang, J.; Spanswick, E.; Voronkov, I.; Connors, M.; Syrjäsuo, M.; Baker, G.; Jackel, B.; Trondsen, T.; et al. Simultaneous THEMIS in situ and auroral observations of a small substorm. Geophys. Res. Lett. 2008, 35, L17S18. [Google Scholar] [CrossRef] [Green Version]
- Haerendel, G. Substorm onset: Current sheet avalanche and stop layer. J. Geophys. Res. Space Phys. 2015, 120, 1697–1714. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Evaluation of the cross-field current instability as a substorm onset process with auroral bead properties. J. Geophys. Res. Space Phys. 2020, 123, e2020JA027867. [Google Scholar] [CrossRef]
- Pritchett, P.L.; Coroniti, F.V.; Nishimura, Y. The kinetic ballooning/interchange instability as a source of dipolarization fronts and auroral streamers. J. Geophys. Res. Space Phys. 2014, 119, 4723–4739. [Google Scholar] [CrossRef]
- Haerendel, G.; Frey, H. The onset of a substorm and the mating instability. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029492. [Google Scholar] [CrossRef]
- Samson, J.C.; Wallis, D.D.; Hughes, T.J.; Creutzberg, F.; Ruohoniemi, J.M.; Greewalkd, R.A. Substorm intensifications and field line resonances in the nightside magnetosphere. J. Geophys. Res. 1992, 97, 8495–8518. [Google Scholar] [CrossRef]
- Yoon, P.H.; Lui, A.T.Y.; Sitnov, M. Generalized lower-hybrid drift instabilities in current-sheet equilibrium. Phys. Plasmas 2002, 9, 1526–1538. [Google Scholar] [CrossRef]
- Pu, Z.Y.; Korth, A.; Chen, Z.X.; Friedel RH, W.; Zong, Q.G.; Wang, X.M.; Wong, M.H.; Fu, S.Y.; Pulkkinen, T.I. MHD drift ballooning instability near the inner edge of the near-Earth plasma sheet. J. Geophys. Res. 1997, 102, 14397–14406. [Google Scholar] [CrossRef]
- Voronkov, I.; Rankin, R.; Frycz, P.; Tikhonchuk, V.T.; Samson, J.C. Coupling of shear flow and pressure gradient instabilities. J. Geophys. Res. 1997, 102, 9639–9650. [Google Scholar] [CrossRef]
- Cheng, C.Z.; Lui, A.T.Y. Kinetic ballooning instability for substorm onset and current disruption observed by AMPTE/CCE. Geophys. Res. Lett. 1998, 25, 4091–4094. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, E.; Samson, J.C.; Voronkov, I.; Rostoker, G. Dynamics of the substorm expansive phase. J. Geophys. Res. 2001, 106, 13145–13163. [Google Scholar] [CrossRef]
- Cheng, C.Z. Physics of substorm growth phase, onset, and depolarization. Space Sci. Rev. 2004, 113, 207–270. [Google Scholar] [CrossRef] [Green Version]
- Samson., J.C.; Dobias, P. Explosive instabilities and substorm intensifications in the Earth’s magnetotail. In Multiscale Coupling of Sun-Earth Processes; Lui, A.T.Y., Kamide, Y., Consolini, G., Eds.; Elsevier B. V.: Amsterdam, The Netherlands, 2005; pp. 235–251. [Google Scholar]
- Saito, M.H.; Miyashita, Y.; Fujimoto, M.; Shinohara, I.; Saito, Y.; Liou, K.; Mukai, T. Ballooning mode waves prior to substorm-associated dipolarizations: Geotail observations. Geophys. Res. Lett. 2008, 35, L07103. [Google Scholar] [CrossRef]
- Liang, J.; Donovan, E.F.; Liu, W.W.; Jackel, B.; Syrjasuo, M.; Mende, S.B.; Frey, H.U.; Angelopoulos, V.; Connors, M. Intensification of pre-existing auroral arc at substorm expansion phase onset: Wave-like disruption during the first tens of seconds. Geophys. Res. Lett. 2008, 35, L17S19. [Google Scholar] [CrossRef] [Green Version]
- Rae, I.J.; Mann, I.R.; Angelopoulos, V.; Murphy, K.R.; Milling, D.K.; Kale, A.; Frey, H.; Rostoker, G.; Russell, C.T.; Watt, C.; et al. Near-Earth initiation of a terrestrial substorm. J. Geophys. Res. 2009, 114, A07220. [Google Scholar] [CrossRef] [Green Version]
- Rae, I.J.; Watt CE, J.; Mann, I.R.; Murphy, K.R.; Samson, J.C.; Kabin, K.; Angelopoulos, V. Optical characterization of the growth and spatial structure of a substorm onset arc. J. Geophys. Res. 2010, 115, A10222. [Google Scholar] [CrossRef] [Green Version]
- Keiling, A. Pi2 pulsations driven by ballooning instability. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Liu, W.W.; Liang, J.; Donovan, E.F.; Spanswick, E. If substorm onset triggers tail reconnection, what triggers substorm onset? J. Geophys. Res. 2012, 117, A11220. [Google Scholar] [CrossRef] [Green Version]
- Kozelova, T.V.; Kozelov, B.V. Substorm-associated explosive magnetic field stretching near the earthward edge of the plasma sheet. J. Geophys. Res. Space Phys. 2013, 118, 3323–3335. [Google Scholar] [CrossRef]
- Xing, X.; Liang, J.; Spanswick, E.; Lyons, L.; Angelopoulos, V. Auroral wave structures and ballooning instabilities in the plasma sheet. J. Geophys. Res. Space Phys. 2013, 118, 6319–6326. [Google Scholar] [CrossRef]
- Kalmoni, N.M.E.; Rae, I.J.; Watt, C.E.J.; Murphy, K.R.; Forsyth, C.; Owen, C.J. Statistical characterization of the growth and spatial scales of the sub storm onset arc. J. Geophys. Res. Space Phys. 2015, 120, 8503–8516. [Google Scholar] [CrossRef]
- Nishimura, Y.; Yang, J.; Pritchett, P.L.; Coroniti, F.V.; Donovan, E.F.; Lyons, L.R.; Wolf, R.A.; Angelopoulos, V.; Mende, S.B. Statisitcal properties of substorm auroral onset beads/rays. J. Geophys. Res. Space Phys. 2016, 121, 8661–8676. [Google Scholar] [CrossRef] [Green Version]
- Lui, A.T.Y. Dipolarization front and current disruption. Geophys. Res. Lett. 2016, 43, 10050. [Google Scholar] [CrossRef]
- Motoba, T.; Hosokawa, K.; Kodokura, A.; Sato, N. Magnetic conjugacy of northern and southern auroral beads. Geophys. Res. Lett. 2012, 39, L08108. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Cross-field current instability for auroral bead formation in breakup arcs. Geophys. Res. Lett. 2016, 43, 6087–6095. [Google Scholar] [CrossRef] [Green Version]
- Lui, A.T.Y.; Burrows, J.R. On the location of auroral arcs near substorm onset. J. Geophys. Res. 1978, 83, 3342–3348. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lui, A.T.Y. Dynamics of the Magnetotail Plasma Sheet Current. Atmosphere 2023, 14, 222. https://doi.org/10.3390/atmos14020222
Lui ATY. Dynamics of the Magnetotail Plasma Sheet Current. Atmosphere. 2023; 14(2):222. https://doi.org/10.3390/atmos14020222
Chicago/Turabian StyleLui, Anthony Tat Yin. 2023. "Dynamics of the Magnetotail Plasma Sheet Current" Atmosphere 14, no. 2: 222. https://doi.org/10.3390/atmos14020222
APA StyleLui, A. T. Y. (2023). Dynamics of the Magnetotail Plasma Sheet Current. Atmosphere, 14(2), 222. https://doi.org/10.3390/atmos14020222