Simulation of Northern Winter Stratospheric Polar Vortex Regimes in CESM2-WACCM
Abstract
:1. Introduction
2. Datasets and Methodology
2.1. Model and Simulations
2.2. Methodology
2.2.1. Clustering
2.2.2. Strong Polar Vortex Events
2.2.3. Extreme Weak Polar Vortex Events
2.2.4. Eliassen Palm Flux
3. Stratospheric Weather Regimes in the Northern Winter
3.1. Simulation of the Six Regimes at the Stratosphere by CESM2-WACCM
3.2. Wave Forcing during Six Polar Vortex Regimes at the Stratosphere
3.3. Simulation of Tropospheric Circulation Patterns for the Six Regimes at the Stratosphere
4. Evolution of the Tropospheric Circulation Related to the Regimes in the Stratosphere
4.1. Change in the Circulation at the Stratosphere
4.2. Change in the Tropospheric Circulation
4.3. Change in the Weather Anomalies at Near Surface
5. Stratospheric Weather Regime Conversions during Vortex Extremes
5.1. Stratospheric Weather Regime Conversion during SSWs
5.2. Stratospheric Weather Regime Conversion during Strong Polar Vortex
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, J.; Ren, R.; Chen, H.; Yu, Y.; Zhou, Y. The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. J. Geophys. Res. Atmos. 2018, 123, 13332–13345. [Google Scholar] [CrossRef]
- Polvani, L.M.; Waugh, D.W. Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Clim. 2004, 17, 3548–3554. [Google Scholar] [CrossRef]
- Lu, Q.; Rao, J.; Guo, D.; Yu, M.; Yu, Y. Downward propagation of sudden stratospheric warming signals and the local environment in the Beijing-Tianjin-Hebei region: A comparative study of the 2018 and 2019 winter cases. Atmos. Res. 2021, 254, 105514. [Google Scholar] [CrossRef]
- Scaife, A.A.; Knight, J.R.; Vallis, G.K.; Folland, C.K. A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett. 2005, 32, L18715. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.J.; Baldwin, M.P.; Solomon, S. Stratosphere-Troposphere Coupling in the Southern Hemisphere. J. Atmos. Sci. 2005, 62, 708–715. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Rao, J.; Guo, D.; Lu, Q.; Shi, C. Northern winter stratospheric polar vortex regimes and their possible influence on the extratropical troposphere. Clim. Dyn. 2022, 1–20. [Google Scholar] [CrossRef]
- Huang, W.; Yu, Y.; Yin, Z.; Chen, H.; Gao, M. Appreciable role of stratospheric polar vortex in the abnormal diffusion of air pollutant in North China in 2015/2016 winter and implications for prediction. Atmos. Environ. 2021, 259, 118549. [Google Scholar] [CrossRef]
- Lu, Q.; Rao, J.; Shi, C.; Guo, D.; Fu, G.; Wang, J.; Liang, Z. Possible influence of sudden stratospheric warmings on the atmospheric environment in the Beijing-Tianjin-Hebei region. Atmos. Chem. Phys. 2022, 22, 13087–13102. [Google Scholar] [CrossRef]
- Lu, Q.; Rao, J.; Shi, C.; Guo, D.; Wang, J.; Liang, Z.; Wang, T. Observational subseasonal variability of the PM2.5 concentration in the Beijing-Tianjin-Hebei area during the January 2021 sudden stratospheric warming. Adv. Atmos. Sci. 2022, 39, 1623–1636. [Google Scholar] [CrossRef] [PubMed]
- Manney, G.L.; Livesey, N.J.; Santee, M.L.; Froidevaux, L.; Lambert, A.; Lawrence, Z.D.; Millán, L.F.; Neu, J.L.; Read, W.G.; Schwartz, M.J.; et al. Record-Low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophys. Res. Lett. 2020, 47, e2020GL089063. [Google Scholar] [CrossRef]
- Rao, J.; Garfinkel, C.I. The strong stratospheric polar vortex in March 2020 in Sub-Seasonal to Seasonal Models: Implications for empirical prediction of the low Arctic total ozone extreme. J. Geophys. Res. Atmos. 2021, 126, e2020JD034190. [Google Scholar] [CrossRef]
- Rao, J.; Garfinkel, C.I.; White, I.P. Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in Subseasonal to Seasonal (S2S) Models. J. Geophys. Res. Atmos. 2020, 125, e2019JD031919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Rao, J.; Guo, D. Arctic ozone loss in early spring and its impact on the stratosphere-troposphere coupling. Earth Planet. Phys. 2022, 6, 177–190. [Google Scholar] [CrossRef]
- Charlton, A.J.; Polvani, L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Clim. 2007, 20, 449–469. [Google Scholar] [CrossRef]
- Butler, A.H.; Seidel, D.J.; Hardiman, S.C.; Butchart, N.; Birner, T.; Match, A. Defining sudden stratospheric warmings. Bull. Am. Meteor. Soc. 2015, 96, 1913–1928. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Ayarzagüena, B.; Birner, T.; Butchart, N.; Butler, A.H.; Charlton-Perez, A.J.; Domeisen, D.I.V.; Garfinkel, C.I.; Garny, H.; Gerber, E.P.; et al. Sudden stratospheric warmings. Rev. Geophys. 2021, 59, e2020RG000708. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Stephenson, D.B.; Thompson, D.W.J.; Dunkerton, T.J.; Charlton, A.J.; O’Neill, A. Stratospheric memory and skill of extended-range weather forecasts. Science 2003, 301, 636–640. [Google Scholar] [CrossRef]
- Sigmond, M.; Scinocca, J.F.; Kharin, V.V.; Shepherd, T.G. Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci. 2013, 6, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, O.P.; Baldwin, M.; Charlton-Perez, A.; Charron, M.; Cheung, J.C.H.; Eckermann, S.D.; Gerber, E.; Jackson, D.R.; Kuroda, Y.; Lang, A.; et al. Examining the predictability of the stratospheric sudden warming of January 2013 using multiple NWP systems. Mon. Weather Rev. 2016, 144, 1935–1960. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, O.P.; Baldwin, M.; Charlton-Perez, A.; Charron, M.; Eckermann, S.D.; Gerber, E.; Harrison, R.G.; Jackson, D.R.; Kim, B.M.; Kuroda, Y.; et al. The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Q. J. R. Meteorol. Soc. 2015, 141, 987–1003. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Butler, A.H.; Charlton-Perez, A.J.; Ayarzagüena, B.; Baldwin, M.P.; Dunn-Sigouin, E.; Furtado, J.C.; Garfinkel, C.I.; Hitchcock, P.; Karpechko, A.Y.; et al. The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere. J. Geophys. Res. Atmos. 2020, 125, e2019JD030920. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Butler, A.H.; Charlton-Perez, A.J.; Ayarzagüena, B.; Baldwin, M.P.; Dunn-Sigouin, E.; Furtado, J.C.; Garfinkel, C.I.; Hitchcock, P.; Karpechko, A.Y.; et al. The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J. Geophys. Res. Atmos. 2020, 125, e2019JD030923. [Google Scholar] [CrossRef]
- Scaife, A.A.; Baldwin, M.P.; Butler, A.H.; Charlton-Perez, A.J.; Domeisen, D.I.V.; Garfinkel, C.I.; Hardiman, S.C.; Haynes, P.; Karpechko, A.Y.; Lim, E.P.; et al. Long-range prediction and the stratosphere. Atmos. Chem. Phys. 2022, 22, 2601–2623. [Google Scholar] [CrossRef]
- Kolstad, E.W.; Charlton-Perez, A.J. Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Clim. Dyn. 2010, 37, 1443–1456. [Google Scholar] [CrossRef] [Green Version]
- Charlton-Perez, A.J.; Ferranti, L.; Lee, R.W. The influence of the stratospheric state on North Atlantic weather regimes. Q. J. R. Meteorol. Soc. 2018, 144, 1140–1151. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Lawrence, Z.D.; Butler, A.H.; Karpechko, A.Y. Seasonal forecasts of the exceptional Northern Hemisphere Winter of 2020. Geophys. Res. Lett. 2020, 47, e2020GL090328. [Google Scholar] [CrossRef]
- Lee, S.H.; Furtado, J.C.; Charlton-Perez, A.J. Wintertime North American weather regimes and the Arctic stratospheric polar vortex. Geophys. Res. Lett. 2019, 46, 14892–14900. [Google Scholar] [CrossRef]
- Michelangeli, P.-A.; Vautard, R.; Legras, B. Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci. 1995, 52, 1237–1256. [Google Scholar] [CrossRef]
- Grams, C.M.; Beerli, R.; Pfenninger, S.; Staffell, I.; Wernli, H. Balancing Europe’s wind power output through spatial deployment informed by weather regimes. Nat. Clim. Chang. 2017, 7, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Ferranti, L.; Magnusson, L.; Vitart, F.; Richardson, D.S. How far in advance can we predict changes in large-scale flow leading to severe cold conditions over Europe? Q. J. R. Meteorol. Soc. 2018, 144, 1788–1802. [Google Scholar] [CrossRef] [Green Version]
- Domeisen, D.I.V.; Grams, C.M.; Papritz, L. The role of North Atlantic-European weather regimes in the surface impact of sudden stratospheric warming events. Weather Clim. Dyn. 2020, 1, 373–388. [Google Scholar] [CrossRef]
- Furtado, J.C.; Cohen, J.; Becker, E.J.; Collins, D.C. Evaluating the relationship between sudden stratospheric warmings and tropospheric weather regimes in the NMME phase-2 models. Clim. Dyn. 2021, 56, 2321–2338. [Google Scholar] [CrossRef]
- Kretschmer, M.; Cohen, J.; Matthias, V.; Runge, J.; Coumou, D. The different stratospheric influence on cold-extremes in Eurasia and North America. NPJ Clim. Atmos. Sci. 2018, 1, 44. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Agel, L.; Barlow, M.; Garfinkel, C.I.; White, I. Linking Arctic variability and change with extreme winter weather in the United States. Science 2021, 373, 1116–1121. [Google Scholar] [CrossRef]
- Manzini, E.; Karpechko, A.Y.; Anstey, J.; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.; Davini, P.; et al. Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. J. Geophys. Res. Atmos. 2014, 119, 7979–7998. [Google Scholar] [CrossRef]
- Seviour, W.J.M.; Gray, L.J.; Mitchell, D.M. Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models. J. Geophys. Res. Atmos. 2016, 121, 1400–1413. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Chen, Y.-H.; Rao, J.; Liu, S.-M.; Li, S.-Y.; Ma, M.-H.; Wang, Y.-B. Statistical characteristics of major sudden stratospheric warming events in CESM1-WACCM: A comparison with the JRA55 and NCEP/NCAR reanalyses. Atmosphere 2019, 10, 519. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.; Garfinkel, C.I. CMIP5/6 models project little change in the statistical characteristics of sudden stratospheric warmings in the 21st century. Environ. Res. Lett. 2021, 16, 034024. [Google Scholar] [CrossRef]
- Liang, Z.; Rao, J.; Guo, D.; Lu, Q. Simulation and projection of the sudden stratospheric warming events in different scenarios by CESM2-WACCM. Clim. Dyn. 2022, 59, 3741–3761. [Google Scholar] [CrossRef]
- Liu, S.-M.; Chen, Y.-H.; Rao, J.; Cao, C.; Li, S.-Y.; Ma, M.-H.; Wang, Y.-B. Parallel comparison of major sudden stratospheric warming events in CESM1-WACCM and CESM2-WACCM. Atmosphere 2019, 10, 679. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; Hannay, C.; Bacmeister, J.T.; Neale, R.B.; Pendergrass, A.G.; Danabasoglu, G.; Lamarque, J.-F.; Fasullo, J.T.; Bailey, D.A.; Lawrence, D.M.; et al. High climate sensitivity in the Community Earth System Model Version 2 (CESM2). Geophys. Res. Lett. 2019, 46, 8329–8337. [Google Scholar] [CrossRef]
- Wu, Z.; Reichler, T. Variations in the frequency of stratospheric sudden warmings in CMIP5 and CMIP6 and possible causes. J. Clim. 2020, 33, 10305–10320. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Bracegirdle, T.J.; Phillips, T.; Bushell, A.; Gray, L. Mechanisms for the Holton-Tan relationship and its decadal variation. J. Geophys. Res. Atmos. 2014, 119, 2811–2830. [Google Scholar] [CrossRef] [Green Version]
- Andrews, D.G.; Holton, J.R.; Leovy, C.B. Middle Atmosphere Dynamics; Academic Press: San Diego, CA, USA, 1987; p. 489. [Google Scholar]
- Rao, J.; Garfinkel, C.I.; Wu, T.; Lu, Y.; Chu, M. Mean state of the Northern Hemisphere stratospheric polar vortex in three generations of CMIP models. J. Clim. 2022, 35, 4603–4625. [Google Scholar] [CrossRef]
- Martineau, P.; Son, S.-W. Onset of circulation anomalies during stratospheric vortex weakening events: The role of planetary-scale waves. J. Clim. 2015, 28, 7347–7370. [Google Scholar] [CrossRef]
- Huang, J.; Tian, W.; Gray, L.J.; Zhang, J.; Li, Y.; Luo, J.; Tian, H. Preconditioning of Arctic stratospheric polar vortex shift events. J. Clim. 2018, 31, 5417–5436. [Google Scholar] [CrossRef]
- Huang, J.; Tian, W.; Zhang, J.; Huang, Q.; Tian, H.; Luo, J. The connection between extreme stratospheric polar vortex events and tropospheric blockings. Q. J. R. Meteorol. Soc. 2017, 143, 1148–1164. [Google Scholar] [CrossRef]
- Martineau, P.; Son, S.-W. Planetary-scale wave activity as a source of varying tropospheric response to stratospheric sudden warming events: A case study. J. Geophys. Res. Atmos. 2013, 118, 10994–11006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Liang, Z.; Gui, Q.; Lu, Q.; Zheng, Q.; Yu, S. Simulation of Northern Winter Stratospheric Polar Vortex Regimes in CESM2-WACCM. Atmosphere 2023, 14, 243. https://doi.org/10.3390/atmos14020243
Guo D, Liang Z, Gui Q, Lu Q, Zheng Q, Yu S. Simulation of Northern Winter Stratospheric Polar Vortex Regimes in CESM2-WACCM. Atmosphere. 2023; 14(2):243. https://doi.org/10.3390/atmos14020243
Chicago/Turabian StyleGuo, Dong, Zhuoqi Liang, Qiang Gui, Qian Lu, Qiong Zheng, and Shuyang Yu. 2023. "Simulation of Northern Winter Stratospheric Polar Vortex Regimes in CESM2-WACCM" Atmosphere 14, no. 2: 243. https://doi.org/10.3390/atmos14020243
APA StyleGuo, D., Liang, Z., Gui, Q., Lu, Q., Zheng, Q., & Yu, S. (2023). Simulation of Northern Winter Stratospheric Polar Vortex Regimes in CESM2-WACCM. Atmosphere, 14(2), 243. https://doi.org/10.3390/atmos14020243