Computation of the Attenuated Backscattering Coefficient by the Backscattering Lidar Signal Simulator (BLISS) in the Framework of the CALIOP/CALIPSO Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Principles for Computation of Lidar Backscatterred Signal under Multiple-Scattering Regime
2.2. Presentation of BLISS
2.3. Presentation of McRALI
2.4. Conditions of Simulations
3. Results
3.1. Estimation of the BLISS Multiple-Scattering Coefficient with McRALI
3.2. Comparison of ATB Simulated by BLISS and McRALI in Multiple-Scattering Regime
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramanathan, V. The Role of Earth Radiation Budget Studies in Climate and General Circulation Research. J. Geophys. Res. 1987, 92, 4075. [Google Scholar] [CrossRef]
- Ramanathan, V.; Cess, R.D.; Harrison, E.F.; Minnis, P.; Barkstrom, B.R.; Ahmad, E.; Hartmann, D. Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment. Science 1989, 243, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 923–1054. ISBN 978-1-00-915789-6. [Google Scholar]
- Wild, M.; Hakuba, M.Z.; Folini, D.; Dörig-Ott, P.; Schär, C.; Kato, S.; Long, C.N. The Cloud-Free Global Energy Balance and Inferred Cloud Radiative Effects: An Assessment Based on Direct Observations and Climate Models. Clim. Dyn. 2019, 52, 4787–4812. [Google Scholar] [CrossRef] [Green Version]
- Bony, S.; Stevens, B.; Frierson, D.M.W.; Jakob, C.; Kageyama, M.; Pincus, R.; Shepherd, T.G.; Sherwood, S.C.; Siebesma, A.P.; Sobel, A.H.; et al. Clouds, Circulation and Climate Sensitivity. Nat. Geosci. 2015, 8, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of Higher Climate Sensitivity in CMIP6 Models. Geophys. Res. Lett. 2020, 47, e2019GL085782. [Google Scholar] [CrossRef] [Green Version]
- Rossow, W.B. Measuring Cloud Properties from Space: A Review. J. Clim. 1989, 2, 201–213. [Google Scholar] [CrossRef]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.; Guignard, A.; Heidinger, A.; et al. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Foster, M.J.; Walther, A.; Zhao, X.T. The Pathfinder Atmospheres–Extended AVHRR Climate Dataset. Bull. Am. Meteorol. Soc. 2014, 95, 909–922. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’Connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The Cloudsat Mission and the A-Train: A New Dimension of Space-Based Observations of Clouds and Precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission: A Global 3D View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Stephens, G.; Winker, D.; Pelon, J.; Trepte, C.; Vane, D.; Yuhas, C.; L’Ecuyer, T.; Lebsock, M. CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System. Bull. Am. Meteorol. Soc. 2018, 99, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Illingworth, A.J.; Barker, H.W.; Beljaars, A.; Ceccaldi, M.; Chepfer, H.; Clerbaux, N.; Cole, J.; Delanoë, J.; Domenech, C.; Donovan, D.P.; et al. The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation. Bull. Am. Meteorol. Soc. 2015, 96, 1311–1332. [Google Scholar] [CrossRef] [Green Version]
- Do Carmo, J.P.; de Villele, G.; Wallace, K.; Lefebvre, A.; Ghose, K.; Kanitz, T.; Chassat, F.; Corselle, B.; Belhadj, T.; Bravetti, P. ATmospheric LIDar (ATLID): Pre-Launch Testing and Calibration of the European Space Agency Instrument That Will Measure Aerosols and Thin Clouds in the Atmosphere. Atmosphere 2021, 12, 76. [Google Scholar] [CrossRef]
- Lieber, M.; Weimer, C.; Stephens, M.; Demara, R. Development of a Validated End-to-End Model for Space-Based Lidar Systems; Singh, U.N., Ed.; SPIE: San Diego, CA, USA, 2007; p. 66810F. [Google Scholar]
- Reitebuch, O.; Marksteiner, U.; Rompel, M.; Meringer, M.; Schmidt, K.; Huber, D.; Nikolaus, I.; Dabas, A.; Marshall, J.; de Bruin, F.; et al. Aeolus End-To-End Simulator and Wind Retrieval Algorithms up to Level 1B. EPJ Web Conf. 2018, 176, 02010. [Google Scholar] [CrossRef] [Green Version]
- Voors, R.; Donovan, D.; Acarreta, J.; Eisinger, M.; Franco, R.; Lajas, D.; Moyano, R.; Pirondini, F.; Ramos, J.; Wehr, T. ECSIM: The Simulator Framework for EarthCARE; Meynart, R., Neeck, S.P., Shimoda, H., Habib, S., Eds.; SPIE: Florence, Italy, 2007; p. 67441Y. [Google Scholar]
- Donovan, D.; Voors, R.; van Zadelhoff, G.-J.; Acarreta, J.-R. ECSIM Model and Algorithms Document; ECSIM-KNMI-TEC-MAD01-R 2008 KNMI Tech. Rep.: Utrecht, The Netherlands, 2008. [Google Scholar]
- Delanoë, J.; Hogan, R.J. A Variational Scheme for Retrieving Ice Cloud Properties from Combined Radar, Lidar, and Infrared Radiometer. J. Geophys. Res. 2008, 113, D07204. [Google Scholar] [CrossRef] [Green Version]
- Young, S.A.; Vaughan, M.A. The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description. J. Atmos. Ocean. Technol. 2009, 26, 1105–1119. [Google Scholar] [CrossRef]
- Young, S.A.; Vaughan, M.A.; Garnier, A.; Tackett, J.L.; Lambeth, J.D.; Powell, K.A. Extinction and Optical Depth Retrievals for CALIPSO’s Version 4 Data Release. Atmos. Meas. Tech. 2018, 11, 5701–5727. [Google Scholar] [CrossRef] [Green Version]
- Janisková, M. Assimilation of Cloud Information from Space-borne Radar and Lidar: Experimental Study Using a 1D+4D-Var Technique. Q. J. R. Meteorol. Soc. 2015, 141, 2708–2725. [Google Scholar] [CrossRef]
- Janisková, M.; Fielding, M.D. Direct 4D-Var Assimilation of Space-borne Cloud Radar and Lidar Observations. Part II: Impact on Analysis and Subsequent Forecast. Q. J. R. Meteorol. Soc. 2020, 146, 3900–3916. [Google Scholar] [CrossRef]
- Fielding, M.D.; Janisková, M. Direct 4D-Var Assimilation of Space-borne Cloud Radar Reflectivity and Lidar Backscatter. Part I: Observation Operator and Implementation. Q. J. R. Meteorol. Soc. 2020, 146, 3877–3899. [Google Scholar] [CrossRef]
- Bissonnette, L.R. Lidar and Multiple Scattering. In Lidar; Weitkamp, C., Ed.; Springer Series in Optical Sciences; Springer-Verlag: New York, NY, USA, 2005; Volume 102, pp. 43–103. ISBN 978-0-387-40075-4. [Google Scholar]
- Hu, Y.; Liu, Z.; Winker, D.; Vaughan, M.; Noel, V.; Bissonnette, L.; Roy, G.; McGill, M. Simple Relation between Lidar Multiple Scattering and Depolarization for Water Clouds. Opt. Lett. 2006, 31, 1809. [Google Scholar] [CrossRef] [PubMed]
- Donovan, D.P. The Expected Impact of Multiple Scattering on ATLID Signals. EPJ Web Conf. 2016, 119, 01006. [Google Scholar] [CrossRef] [Green Version]
- Shcherbakov, V.; Szczap, F.; Alkasem, A.; Mioche, G.; Cornet, C. Empirical Model of Multiple-Scattering Effect on Single-Wavelength Lidar Data of Aerosols and Clouds. Atmos. Meas. Tech. 2022, 15, 1729–1754. [Google Scholar] [CrossRef]
- Hogan, R.J. Fast Approximate Calculation of Multiply Scattered Lidar Returns. Appl. Opt. 2006, 45, 5984. [Google Scholar] [CrossRef] [PubMed]
- Hogan, R.J. Fast Lidar and Radar Multiple-Scattering Models. Part I: Small-Angle Scattering Using the Photon Variance–Covariance Method. J. Atmos. Sci. 2008, 65, 3621–3635. [Google Scholar] [CrossRef] [Green Version]
- Platt, C.M.R. Lidar and Radioinetric Observations of Cirrus Clouds. J. Atmos. Sci. 1973, 30, 1191–1204. [Google Scholar] [CrossRef]
- Di Michele, S.; Martins, E.; Janisková, M. Observation Operator and Observation Processing for Cloud Lidar; WP-1200 Report for the ESA Project Support-to-Science-Element STSE Study—EarthCARE Assimilation; ECMWF: Reading, UK, 2014. [Google Scholar]
- Chepfer, H.; Bony, S.; Winker, D.; Chiriaco, M.; Dufresne, J.-L.; Sèze, G. Use of CALIPSO Lidar Observations to Evaluate the Cloudiness Simulated by a Climate Model. Geophys. Res. Lett. 2008, 35, L15704. [Google Scholar] [CrossRef] [Green Version]
- Reverdy, M.; Chepfer, H.; Donovan, D.; Noel, V.; Cesana, G.; Hoareau, C.; Chiriaco, M.; Bastin, S. An EarthCARE/ATLID Simulator to Evaluate Cloud Description in Climate Models: AN EARTHCARE/ATLID SIMULATOR. J. Geophys. Res. Atmos. 2015, 120, 113. [Google Scholar] [CrossRef]
- Bodas-Salcedo, A.; Webb, M.J.; Bony, S.; Chepfer, H.; Dufresne, J.-L.; Klein, S.A.; Zhang, Y.; Marchand, R.; Haynes, J.M.; Pincus, R.; et al. COSP: Satellite Simulation Software for Model Assessment. Bull. Am. Meteorol. Soc. 2011, 92, 1023–1043. [Google Scholar] [CrossRef]
- Swales, D.J.; Pincus, R.; Bodas-Salcedo, A. The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2. Geosci. Model Dev. 2018, 11, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Alkasem, A.; Szczap, F.; Cornet, C.; Shcherbakov, V.; Gour, Y.; Jourdan, O.; Labonnote, L.C.; Mioche, G. Effects of Cirrus Heterogeneity on Lidar CALIOP/CALIPSO Data. J. Quant. Spectrosc. Radiat. Transf. 2017, 202, 38–49. [Google Scholar] [CrossRef]
- Szczap, F.; Alkasem, A.; Mioche, G.; Shcherbakov, V.; Cornet, C.; Delanoë, J.; Gour, Y.; Jourdan, O.; Banson, S.; Bray, E. McRALI: A Monte Carlo High-Spectral-Resolution Lidar and Doppler Radar Simulator for Three-Dimensional Cloudy Atmosphere Remote Sensing. Atmos. Meas. Tech. 2021, 14, 199–221. [Google Scholar] [CrossRef]
- Weitkamp, C. (Ed.) Lidar Range-Resolved Optical Remote Sensing of the Atmosphere; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Chepfer, H.; Pelon, J.; Brogniez, G.; Flamant, C.; Trouillet, V.; Flamant, P.H. Impact of Cirrus Cloud Ice Crystal Shape and Size on Multiple Scattering Effects: Application to Spaceborne and Airborne Backscatter Lidar Measurements during LITE Mission and E LITE Campaign. Geophys. Res. Lett. 1999, 26, 2203–2206. [Google Scholar] [CrossRef]
- Platt, C.M.R. Remote Sounding of High Clouds: I. Calculation of Visible and Infrared Optical Properties from Lidar and Radiometer Measurements. J. Appl. Meteorol. 1979, 18, 1130–1143. [Google Scholar] [CrossRef]
- Winker, D.M. Accounting for Multiple Scattering in Retrievals from Space Lidar; Werner, C., Oppel, U.G., Rother, T., Eds.; SPIE: Oberpfaffenhofen, Germany, 2003; p. 128. [Google Scholar]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Hu, Y.; Hostetler, C.A.; Dall’Olmo, G.; Rodier, S.D.; Hair, J.W.; Trepte, C.R. Space-Based Lidar Measurements of Global Ocean Carbon Stocks: Space Lidar Plankton Measurements. Geophys. Res. Lett. 2013, 40, 4355–4360. [Google Scholar] [CrossRef]
- Marchuk, G.I.; Mikhailov, G.A.; Nazareliev, M.A.; Darbinjan, R.A.; Elepov, B.S. The Monte Carlo Method in Atmospheric Optics; Series in Optical Science; Springer: Berlin/Heidelberg, Germany, 1980; Volume 12. [Google Scholar]
- Cornet, C.; C-Labonnote, L.; Szczap, F. Three-Dimensional Polarized Monte Carlo Atmospheric Radiative Transfer Model (3DMCPOL): 3D Effects on Polarized Visible Reflectances of a Cirrus Cloud. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 174–186. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Hansen, J.E.; Travis, L.D. Light Scattering in Planetary Atmospheres. Space Sci. Rev. 1974, 16, 527–610. [Google Scholar] [CrossRef]
- Yang, P.; Liou, K.N. Geometric-Optics–Integral-Equation Method for Light Scattering by Nonspherical Ice Crystals. Appl. Opt. 1996, 35, 6568. [Google Scholar] [CrossRef]
- Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Dudhia, J.; Wanherdrick, Y.; Morille, Y.; Protat, A. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at the SIRTA Atmospheric Observatory. Mon. Weather. Rev. 2006, 134, 897–918. [Google Scholar] [CrossRef] [Green Version]
- Chepfer, H.; Chiriaco, M.; Vautard, R.; Spinhirne, J. Evaluation of MM5 Optically Thin Clouds over Europe in Fall Using ICESat Lidar Spaceborne Observations. Mon. Weather. Rev. 2007, 135, 2737–2753. [Google Scholar] [CrossRef] [Green Version]
- Lamquin, N.; Stubenrauch, C.J.; Pelon, J. Upper Tropospheric Humidity and Cirrus Geometrical and Optical Thickness: Relationships Inferred from 1 Year of Collocated AIRS and CALIPSO Data. J. Geophys. Res. 2008, 113, D00A08. [Google Scholar] [CrossRef] [Green Version]
- Josset, D.; Pelon, J.; Garnier, A.; Hu, Y.; Vaughan, M.; Zhai, P.-W.; Kuehn, R.; Lucker, P. Cirrus Optical Depth and Lidar Ratio Retrieval from Combined CALIPSO-CloudSat Observations Using Ocean Surface Echo: Cirrus Optical Depth Using Ocean Surface. J. Geophys. Res. 2012, 117, D05207. [Google Scholar] [CrossRef] [Green Version]
- Garnier, A.; Pelon, J.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Dubuisson, P. Lidar Multiple Scattering Factors Inferred from CALIPSO Lidar and IIR Retrievals of Semi-Transparent Cirrus Cloud Optical Depths over Oceans. Atmos. Meas. Tech. 2015, 8, 2759–2774. [Google Scholar] [CrossRef] [Green Version]
- Young, S.A.; Vaughan, M.A.; Kuehn, R.E.; Winker, D.M. The Retrieval of Profiles of Particulate Extinction from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error Sensitivity Analyses. J. Atmos. Ocean. Technol. 2013, 30, 395–428. [Google Scholar] [CrossRef]
- Luebke, A.E.; Delanoë, J.; Noel, V.; Chepfer, H.; Stevens, B. A Workshop on Remote Sensing of the Atmosphere in Anticipation of the EarthCARE Satellite Mission. Bull. Am. Meteorol. Soc. 2018, 99, ES195–ES198. [Google Scholar] [CrossRef]
Stratocumulus Cloud | Cirrus Cloud | ||||||
---|---|---|---|---|---|---|---|
Extinction (km−1) | Optical Depth | ( μm) | ( μm) | Extinction (km−1) | Optical Depth | ( μm) | ( μm) |
1 | 0.3 | 0.56 | 0.63 | 0.05 | 0.15 | 0.57 | 0.52 |
3 | 0.9 | 0.54 | 0.61 | 0.2 | 0.6 | 0.55 | 0.53 |
5 | 1.5 | 0.51 | 0.56 | 1.0 | 3.0 | 0.53 | 0.48 |
10 | 3.0 | 0.46 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczap, F.; Alkasem, A.; Shcherbakov, V.; Schmisser, R.; Blanc, J.; Mioche, G.; Gour, Y.; Cornet, C.; Banson, S.; Bray, E. Computation of the Attenuated Backscattering Coefficient by the Backscattering Lidar Signal Simulator (BLISS) in the Framework of the CALIOP/CALIPSO Observations. Atmosphere 2023, 14, 249. https://doi.org/10.3390/atmos14020249
Szczap F, Alkasem A, Shcherbakov V, Schmisser R, Blanc J, Mioche G, Gour Y, Cornet C, Banson S, Bray E. Computation of the Attenuated Backscattering Coefficient by the Backscattering Lidar Signal Simulator (BLISS) in the Framework of the CALIOP/CALIPSO Observations. Atmosphere. 2023; 14(2):249. https://doi.org/10.3390/atmos14020249
Chicago/Turabian StyleSzczap, Frédéric, Alain Alkasem, Valery Shcherbakov, Roseline Schmisser, Jérome Blanc, Guillaume Mioche, Yahya Gour, Céline Cornet, Sandra Banson, and Edouard Bray. 2023. "Computation of the Attenuated Backscattering Coefficient by the Backscattering Lidar Signal Simulator (BLISS) in the Framework of the CALIOP/CALIPSO Observations" Atmosphere 14, no. 2: 249. https://doi.org/10.3390/atmos14020249
APA StyleSzczap, F., Alkasem, A., Shcherbakov, V., Schmisser, R., Blanc, J., Mioche, G., Gour, Y., Cornet, C., Banson, S., & Bray, E. (2023). Computation of the Attenuated Backscattering Coefficient by the Backscattering Lidar Signal Simulator (BLISS) in the Framework of the CALIOP/CALIPSO Observations. Atmosphere, 14(2), 249. https://doi.org/10.3390/atmos14020249