Resonant Scattering by Excited Gaseous Components as an Indicator of Ionization Processes in the Atmosphere
Abstract
:1. Introduction
2. Instrument and Method
3. Experimental Data
4. Discussion and Main Results
- It was expected that the value of a lidar signal at a wavelength of 561 nm would be several times higher than at a wavelength of 532 nm, since the content of O+ ions at altitudes in the range of 150–400 km is about two orders of magnitude higher than that of the N+ ions [16]. Our lidar observations showed that the total overnight signal values at a wavelength of 532 nm were typically 20–30% higher than those obtained at a wavelength of 561 nm.
- The altitude of the maxima of the scattered signal did not coincide with that of the F2 layer maximum. The lidar signal peaked at 280–290 km in altitude. According to the ionosonde data obtained on 5 September 2017, the F2 layer maximum was located at altitudes of 300–350 km when the scattering layer maximum was observed.
O2 + hν> O+2 + e, O2 + e > O+2 + 2e,
O + hν> O+ + e, O + e > O+ + 2e.
4.1. Mechanism for Formation of the Resonant Scattering Signal
4.2. Estimated Spectra of Precipitated Particles
4.3. Resonant Scattering in the Middle Atmosphere
4.4. Observations in 2021–2022
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kostko, O.K. Use of laser radar in atmospheric investigations (review). Sov. J. Quantum Electron. 1975, 5, 1161. [Google Scholar] [CrossRef]
- Bowman, M.R.; Gibson, A.J.; Sandford, M.C.W. Application of dye lasers to probe the upper atmosphere by resonance scattering Source. Radio Electron. Eng. 1970, 39, 29–32. [Google Scholar] [CrossRef]
- Kawahara, T.; Nozawa, S.; Saito, N.; Kawabata, T.; Tsuda, T.; Wada, S. Sodium temperature/wind lidar based on laser-diode-pumped nd: Yag lasers deployed at Tromso, Norway (69.6 n, 19.2 e). Opt. Express 2017, 25, A491–A501. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, T.; Nozawa, S.; Kawahara, T.; Kawabata, T.; Saito, N.; Wada, S.; Ogawa, Y.; Oyama, S.; Hall, C.; Tsutsumi, M.; et al. Decrease in sodium density observed during auroral particle precipitation over Tromso, Norway. Geophys. Res. Lett. 2013, 40, 4486. [Google Scholar] [CrossRef]
- Collins, R.; Li, J.; Martus, C. First lidar observation of the mesospheric nickel layer. Geophys. Res. Lett. 2015, 42, 665. [Google Scholar] [CrossRef]
- Collins, R.; Hallinan, T.; Smith, R.; Hernandez, G. Lidar observations of a large high-altitude sporadic Na layer during active aurora. Geophys. Res. Lett. 1996, 23, 3655–3658. [Google Scholar] [CrossRef]
- Higbie, J.M.; Rochester, S.M.; Patton, B.; Holzlöhner, R.; Calia, D.B.; Budker, D. Magnetometry with mesospheric sodium. Proc. Natl. Acad. Sci. USA 2011, 108, 3522–3525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, R.L.; Lummerzheim, D.; Smith, R.W. Analysis of lidar systems for profiling aurorally excited molecular species. Appl. Opt. 1997, 36, 6024. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.L.; Su, L.; Lummerzheim, D.; Doe, R.A. Investigating the Auroral Thermosphere with N2+ Lidar. In Characterising the Ionosphere; Meeting Proceedings RTO-MP-IST-056, Paper 2; RTO: Neuilly-sur-Seine, France, 2006; pp. 2-1–2-14. Available online: http://www.rto.nato.int/abstracts.asp (accessed on 1 January 2023).
- Bychkov, V.V.; Shevtsov, B.M. Dynamics of Lidar Reflections of the Kamchatka Upper Atmosphere and Its Connection with Phenomena in the Ionosphere. Geomagn. Aeron. 2012, 52, 797–804. Available online: http://www.springer.com/alert/urltracking.do?id=Le13877Mb0c557Saf67cb7 (accessed on 1 January 2023). [CrossRef]
- Bychkov, V.V.; Nepomnyashchiy, Y.A.; Perezhogin, A.S.; Shevtsov, B.M. Lidar returns from the upper atmosphere of Kamchatka on observations in 2008–2014. Earth Planets Space 2014, 66, 150. [Google Scholar] [CrossRef]
- Bychkov, V.V.; Perezhogin, A.S.; Shevtsov, B.M.; Marichev, V.N.; Matvienko, G.G.; Belov, A.S. Cheremisin Observations of Aerosol Occurrence in the Middle Atmosphere of Kamchatka in 2007–2011. Atmos. Ocean. Opt. 2012, 25, 228–235. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J. NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.5.2); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. Available online: https://physics.nist.gov/asd (accessed on 1 January 2023).
- Bychkov, V.V.; Perezhogin, A.S.; Seredkin, I.N.; Shevtsov, B.M. On the role of the method of measuring the background signal in the lidar measurements of the upper Atmosphere. In Proceedings of the 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Irkutsk, Russian, 3–7 July 2017; Volume 10466, p. 1046677. [Google Scholar] [CrossRef]
- Bychkov, V.V.; Seredkin, I.N. Resonance Scattering in the Thermosphere as an Indicator of Superthermal Electron Precipitation. Atmos. Ocean. Opt. 2021, 34, 26–33. [Google Scholar] [CrossRef]
- Richards, P.J.; Voglozin, D. Reexamination of ionospheric photochemistry. J. Geophys. Res. Space Phys. 2011, 116, 1–14. [Google Scholar] [CrossRef]
- Shefov, N.N.; Semenov, A.I.; Chomich, V.Y. Radiation of the Upper Atmosphere—An Indicator of Its Structure and Dynamics; GEOS: Moscow, Russia, 2006; p. 740. [Google Scholar]
- Manfred, H.R. Auroral ionization and excitation by incident energetic electrons. Planet. Space Sci. 1963, 11, 1209. [Google Scholar] [CrossRef]
- Konstantinov, O.V.; Matveentsev, A.V. Giant resonant scattering cross sections of electromagnetic wave by an electron in a metal or semiconductor cluster. Tech. Phys. Lett. 2010, 36, 1032–1033. [Google Scholar] [CrossRef]
- Picone, M.; Hedin, A.E.; Drob, D. NRLMSISE-00 Model 2001. Available online: https://ccmc.gsfc.nasa.gov/modelweb/atmos/nrlmsise00.html (accessed on 1 January 2023).
- Deminov, M.G. Earth’s ionosphere. In Plasma Heliogeophysics; Zeleny, L.M., Vevselovsky, I.S., Eds.; Fizmatlit: Moscow, Russia, 2008; Volume 2, pp. 92–174. (In Russian) [Google Scholar]
- Andreev, G.V. Calculation of the ionization cross section by electron impact for hydrogen and oxygen atoms. Phys. -Chem. Kinet. Gas Dyn. 2010, 1, 263–264. [Google Scholar]
- Avakyan, S.V.; Voronin, N.A.; Serova, A.E. The role of Rydberg atoms and molecules in the upper atmosphere. Geomagn. Aeron. 1997, 37, 331–335. [Google Scholar]
- Elnikov, A.V.; Marichev, V.N.; Shelevoi, K.D.; Shelefontyuk, D.I. Laser radar for investigation of the vertical aerosol stratification. Opt. Atm. Okeana 1988, 1, 117–123. [Google Scholar]
- Bychkov, V.V.; Perezhogin, A.S.; Shevtsov, B.M.; Marichev, V.N.; Novikov, P.V.; Cheremisin, A.A. Seasonal Features of the Appearance of Aerosol Scattering in the Stratosphere and Mesosphere of Kamchatka from the Results of Lidar Observations in 2007–2009. Izvestiya. Atmos. Ocean. Phys. 2011, 47, 603–609. [Google Scholar] [CrossRef]
- Bychkov, V.V.; Seredkin, I.N.; Marichev, V.N. Scattering on Excited Ions as a Reason for Detecting Imaginary Aerosols in the Middle Atmosphere. Atmos. Ocean. Opt. 2021, 34, 104–111. [Google Scholar] [CrossRef]
- Bychkov, V.V.; Seredkin, I.N.; Dmitriev, A.V. Resonance scattering as possible reason for detection of imaginary aerosol formations in the upper mesosphere. In Proceedings of the 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, Moscow, Russia, 5–9 July 2021; Volume 11916, p. 119168H. [Google Scholar] [CrossRef]
Transmitter 1 | Transmitter 2 | Receiver |
---|---|---|
Brilliant-B Nd:YAG Laser Pulse energy—400 mJ Wavelength—532.08 nm Line width—0.040 nm Pulse duration—5–6 ns Beam divergence—0.5 mrad | TDL-90 dye laser YG-982E pump laser Pulse energy—100 mJ Wavelength—561.106 nm Line width—0.025 nm Pulse duration—10 ns Beam divergence—0.5 mrad | Telescope mirror diameter—60 cm H8259-01 Hamamatsu PMT M8784-01 photon counters Vertical resolution—1.5 km Light filter bandwidth—1 nm |
Component | Wavelength (nm) | Aki (s−1) | Lower Level | Term | J | Upper Level | Term | J |
---|---|---|---|---|---|---|---|---|
O II | 561.1061 | 2.14 × 106 | 2s22p2(1S)3s | 2S | 1/2 | 2s22p2(3P)4p | 2P° | 1/2 |
NIII | 532.0870 | 5.68 × 107 | 2s2p(3P°)3p | 2D | 5/2 | 2s2p(3P°)3d | 2F° | 7/2 |
NII | 532.0958 | 2.52 × 107 | 2s2p2(4P)3p | 5P° | 1 | 2s2p2(4P)3d | 5P | 2 |
Component | τlife, ns | σ, m2 | Np | Nτ | Nτ × σ | Interaction Probability P |
---|---|---|---|---|---|---|
N+ | 12.82 | 1.35 × 10−13 | 1.0 × 1017 | 1.28 × 1014 | 17.2 | 1 |
O+ | 1.06 | 1.5 × 10−13 | 0.4 × 1017 | 5.1 × 1012 | 0.75 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bychkov, V. Resonant Scattering by Excited Gaseous Components as an Indicator of Ionization Processes in the Atmosphere. Atmosphere 2023, 14, 271. https://doi.org/10.3390/atmos14020271
Bychkov V. Resonant Scattering by Excited Gaseous Components as an Indicator of Ionization Processes in the Atmosphere. Atmosphere. 2023; 14(2):271. https://doi.org/10.3390/atmos14020271
Chicago/Turabian StyleBychkov, Vasily. 2023. "Resonant Scattering by Excited Gaseous Components as an Indicator of Ionization Processes in the Atmosphere" Atmosphere 14, no. 2: 271. https://doi.org/10.3390/atmos14020271
APA StyleBychkov, V. (2023). Resonant Scattering by Excited Gaseous Components as an Indicator of Ionization Processes in the Atmosphere. Atmosphere, 14(2), 271. https://doi.org/10.3390/atmos14020271