Simulations of Summertime Ozone and PM2.5 Pollution in Fenwei Plain (FWP) Using the WRF-Chem Model
Abstract
:1. Introduction
2. Methodology
2.1. Observed Data
2.2. Model Configurations
2.3. Assessment Parameters
3. Results and Discussion
3.1. Model Validation
3.1.1. Simulated Meteorological Parameters
3.1.2. Simulated Pollutants
3.2. Analysis of Pollution Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zong, L.; Yang, Y.; Gao, M.; Wang, H.; Gao, Z. Large-scale synoptic drivers of co-occurring summertime ozone and PM2.5 pollution in eastern China. Atmos. Chem. Phys. 2021, 21, 9105–9124. [Google Scholar] [CrossRef]
- Deng, Y.; Inomata, S.; Sato, K.; Ramasamy, S.; Morino, Y.; Enami, S.; Tanimoto, H. Temperature and acidity dependence of secondary organic aerosol formation from α-pinene ozonolysis with a compact chamber system. Atmos. Chem. Phys. 2021, 21, 5983–6003. [Google Scholar]
- Jia, M.; Zhao, T.; Cheng, X.; Gong, S.; Zhang, X.; Tang, L.; Liu, D.; Wu, X.; Wang, L.; Chen, Y. Inverse relations of PM2.5 and O3 in air compound pollution between cold and hot seasons over an urban area of east China. Atmosphere 2017, 8, 59. [Google Scholar] [CrossRef]
- Li, J.; Cao, L.; Gao, W.; He, L.; Yan, Y.; He, Y.; Pan, Y.; Ji, D.; Liu, Z.; Wang, Y. Seasonal variations in the highly time-resolved aerosol composition, sources and chemical processes of background submicron particles in the North China Plain. Atmos. Chem. Phys. 2021, 21, 4521–4539. [Google Scholar] [CrossRef]
- Wang, P.; Shen, J.; Xia, M.; Sun, S.; Zhang, Y.; Zhang, H.; Wang, X. Unexpected enhancement of ozone exposure and health risks during National Day in China. Atmos. Chem. Phys. 2021, 21, 10347–10356. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, H.; Wang, Z.; Zhao, S.; Fu, Q. A modeling study of effective radiative forcing and climate response due to tropospheric ozone. Adv. Atmos. Sci. 2016, 33, 819–828. [Google Scholar] [CrossRef]
- Lv, Z.; Wei, W.; Cheng, S.; Han, X.; Wang, X. Meteorological characteristics within boundary layer and its influence on PM2.5 pollution in six cities of North China based on WRF-Chem. Atmos. Environ. 2020, 228, 117417. [Google Scholar] [CrossRef]
- Ma, X.; Huang, J.; Zhao, T.; Liu, C.; Zhao, K.; Xing, J.; Xiao, W. Rapid increase in summer surface ozone over the North China Plain during 2013–2019: A side effect of particulate matter reduction control? Atmos. Chem. Phys. 2021, 21, 1–16. [Google Scholar] [CrossRef]
- Dang, R.; Liao, H.; Fu, Y. Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012–2017. Sci. Total Environ. 2021, 754, 142394. [Google Scholar] [CrossRef]
- Ni, R.; Lin, J.; Yan, Y.; Lin, W. Foreign and domestic contributions to springtime ozone over China. Atmos. Chem. Phys. 2018, 18, 11447–11469. [Google Scholar]
- Sun, L.; Xue, L.; Wang, Y.; Li, L.; Lin, J.; Ni, R.; Yan, Y.; Chen, L.; Li, J.; Zhang, Q.; et al. Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015. Atmos. Chem. Phys. 2019, 19, 1455–1469. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y. Performance and application of air quality models on ozone simulation in China—A review. Atmos. Environ. 2022, 293, 119446. [Google Scholar] [CrossRef]
- Gao, M.; Carmichael, G.R.; Wang, Y.; Ji, D.; Liu, Z.; Wang, Z. Improving simulations of sulfate aerosols during winter haze over Northern China: The impacts of heterogeneous oxidation by NO2. Front. Environ. Sci. Eng. 2016, 10, 1–11. [Google Scholar] [CrossRef]
- Fu, X.; Wang, S.; Chang, X.; Cai, S.; Xing, J.; Hao, J. Modeling analysis of secondary inorganic aerosols over China: Pollution characteristics, and meteorological and dust impacts. Sci. Rep. 2016, 6, 35992. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhao, C.; Zhang, M.; Dong, X.; Chen, Y.; Liu, Z.; Hu, Z.; Zhang, Q.; Li, Y.; Yuan, R.; et al. Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: Impacts from boundary-layer mixing and anthropogenic emission. Atmos. Chem. Phys. 2020, 20, 2839–2863. [Google Scholar] [CrossRef]
- Akdi, Y.; Gölveren, E.; Ünlü, K.D.; Yücel, M.E. Modeling and forecasting of monthly PM2.5 emission of Paris by periodogram-based time series methodology. Environ. Monit. Assess. 2021, 193, 1–15. [Google Scholar] [CrossRef]
- Bi, J.; Knowland, K.E.; Keller, C.A.; Liu, Y. Combining Machine Learning and Numerical Simulation for High-Resolution PM2.5 Concentration Forecast. Environ. Sci. Technol. 2022, 56, 1544–1556. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; He, Q.; Guo, L.; Zhang, H.; Yang, G.; Wang, Y.; Chai, F. Characteristics, sources and regional inter-transport of ambient volatile organic compounds in a city located downwind of several large coke production bases in China. Atmos. Environ. 2020, 233, 117573. [Google Scholar] [CrossRef]
- Deng, C.; Tian, S.; Li, Z.; Li, K. Spatiotemporal characteristics of PM2.5 and ozone concentrations in Chinese urban clusters. Chemosphere 2022, 295, 133813. [Google Scholar] [CrossRef]
- NOAA. National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/ (accessed on 4 December 2022).
- CNEMC. China National Environmental Monitoring Centre. Available online: http://www.cnemc.cn/ (accessed on 4 December 2022).
- Mar, K.A.; Ojha, N.; Pozzer, A.; Butler, T.M. Ozone air quality simulations with WRF-Chem (v3. 5.1) over Europe: Model evaluation and chemical mechanism comparison. Geosci. Model. Dev. 2016, 9, 3699–3728. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.-Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Chou, M.D.; Suarez, M.J.; Ho, C.H.; Yan, M.M.; Lee, K.T. Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Clim. 1998, 11, 202–214. [Google Scholar] [CrossRef]
- Monin, A.; Obukhov, A. Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst. Akad. Nauk SSSR 1954, 24, 163–187. [Google Scholar]
- Janić, Z.I. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model; National Centers for Environmental Prediction: College Park, MD, USA, 2001.
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Ek, M.; Mitchell, K.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res.-Atmos. 2003, 108, GCP12-1. [Google Scholar] [CrossRef]
- Saijo, S.; Ikeda, S.; Yamabe, K.; Kakuta, S.; Ishigame, H.; Akitsu, A.; Fujikado, N.; Kusaka, T.; Kubo, S.; Chung, S.H.; et al. Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 2010, 32, 681–691. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef]
- Carter, W.P. Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment. Contract 2000, 92, 95–308. [Google Scholar]
- Damian, V.; Sandu, A.; Damian, M.; Potra, F.; Carmichael, G.R. The kinetic preprocessor KPP-a software environment for solving chemical kinetics. Comput. Chem. Eng. 2002, 26, 1567–1579. [Google Scholar] [CrossRef]
- Sandu, A.; Daescu, D.N.; Carmichael, G.R. Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: Part I—Theory and software tools. Atmos. Environ. 2003, 37, 5083–5096. [Google Scholar] [CrossRef]
- Sandu, A.; Sander, R. Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos. Chem. Phys. 2006, 6, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef]
- Ding, H.; Cao, L.; Jiang, H.; Jia, W.; Chen, Y.; An, J. Influence on the Temperature Estimation by the Planetary Boundary Layer Scheme with Different Minimum Eddy Diffusivity in WRF v3. 9.1. 1. Geosci. Model. Dev. Discuss. 2021, 14, 6135–6153. [Google Scholar] [CrossRef]
- Georgiou, G.K.; Christoudias, T.; Proestos, Y.; Kushta, J.; Pikridas, M.; Sciare, J.; Savvides, C.; Lelieveld, J. Evaluation of WRF-Chem model (v3. 9.1. 1) real-time air quality forecasts over the Eastern Mediterranean. Geosci. Model. Dev. 2022, 15, 4129–4146. [Google Scholar] [CrossRef]
- Wei, W.; Lv, Z.F.; Li, Y.; Wang, L.T.; Cheng, S.; Liu, H. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China. Atmos. Environ. 2018, 175, 44–53. [Google Scholar] [CrossRef]
- Dai, H.; Zhu, J.; Liao, H.; Li, J.; Liang, M.; Yang, Y.; Yue, X. Co-occurrence of ozone and PM2. 5 pollution in the Yangtze River Delta over 2013–2019: Spatiotemporal distribution and meteorological conditions. Atmos. Res. 2021, 249, 105363. [Google Scholar] [CrossRef]
- Shu, L.; Wang, T.; Han, H.; Xie, M.; Chen, P.; Li, M.; Wu, H. Summertime ozone pollution in the Yangtze River Delta of eastern China during 2013–2017: Synoptic impacts and source apportionment. Environ. Pollut. 2020, 257, 113631. [Google Scholar] [CrossRef]
- Wu, J.; Bei, N.; Li, X.; Cao, J.; Feng, T.; Wang, Y.; Tie, X.; Li, G. Widespread air pollutants of the North China Plain during the Asian summer monsoon season: A case study. Atmos. Chem. Phys. 2018, 18, 8491–8504. [Google Scholar] [CrossRef]
- Griffiths, P.T.; Murray, L.T.; Zeng, G.; Shin, Y.M.; Abraham, N.L.; Archibald, A.T.; Deushi, M.; Emmons, L.K.; Galbally, I.E.; Hassler, B.; et al. Tropospheric ozone in CMIP6 simulations. Atmos. Chem. Phys. 2021, 21, 4187–4218. [Google Scholar] [CrossRef]
City | Longitude | Latitude |
---|---|---|
Taiyuan (TY) | 112.50 | 37.80 |
Xi’an (XA) | 108.90 | 34.27 |
Baoji (BJ) | 107.15 | 34.38 |
Luoyang (LY) | 112.44 | 34.70 |
Linfen (LF) | 111.50 | 36.08 |
Yuncheng (YC) | 110.97 | 35.03 |
Jinzhong (JZ) | 112.75 | 37.68 |
Xianyang (XY) | 108.07 | 34.28 |
Weinan (WN) | 109.58 | 34.95 |
Tongchuan (TC) | 108.93 | 34.90 |
Sanmenxia (SMX) | 111.19 | 34.76 |
Lvliang (LL) | 111.12 | 37.51 |
Process | Option | Reference |
---|---|---|
Cloud microphysics | Morrison 2-moment | Morrison et al. [24] |
Longwave radiation | Rapid radiative transfer model (RRTM) | Mlawer et al. [25] |
Shortwave radiation | Goddard | Chou et al. [26] |
Surface layer | Monin–Obukhov scheme | Monin and Obukhov [27], Janić [28] |
Land-surface physics | Noah land surface model | Chen and Dudhia [29], Ek et al. [30] |
Urban surface physics | Urban canopy | Saijo et al. [31] |
Planetary boundary layer | Yonsei University Scheme (YSU) | Hong et al. [32] |
Cumulus parameterization | Grell 3D | Grell and Dévényi [33] |
City | R | IOA | MB |
---|---|---|---|
Taiyuan (TY) | 0.87 | 0.90 | 1.71 |
Xi’an (XA) | 0.97 | 0.63 | 2.45 |
Baoji (BJ) | 0.98 | 0.82 | −1.11 |
Luoyang (LY) | 0.77 | 0.78 | 2.70 |
Linfen (LF) | 0.98 | 0.60 | 3.29 |
Yuncheng (YC) | 0.97 | 0.71 | 3.33 |
Jinzhong (JZ) | 0.93 | 0.62 | 6.00 |
Xianyang (XY) | 0.80 | 0.74 | 3.96 |
Weinan (WN) | 0.98 | 0.76 | 2.42 |
Tongchuan (TC) | 0.96 | 0.61 | 5.10 |
Sanmenxia (SMX) | 0.96 | 0.66 | 5.23 |
Lvliang (LL) | 0.95 | 0.80 | 2.10 |
City | R | IOA | MB |
---|---|---|---|
Taiyuan (TY) | 0.25 | 0.55 | 0.06 |
Xi’an (XA) | 0.69 | 0.23 | 0.56 |
Baoji (BJ) | 0.74 | 0.56 | −0.12 |
Luoyang (LY) | 0.20 | 0.49 | 0.57 |
Linfen (LF) | 0.73 | 0.39 | −0.55 |
Yuncheng (YC) | 0.80 | 0.55 | 0.90 |
Jinzhong (JZ) | 0.60 | 0.25 | 0.16 |
Xianyang (XY) | 0.46 | 0.69 | −0.05 |
Weinan (WN) | 0.77 | 0.39 | 0.89 |
Tongchuan (TC) | 0.81 | 0.48 | 0.35 |
Sanmenxia (SMX) | 0.64 | 0.35 | 1.07 |
Lvliang (LL) | 0.61 | 0.30 | 0.12 |
City | R | IOA | NMB |
---|---|---|---|
Taiyuan (TY) | 0.83 | 0.89 | −0.15 |
Xi’an (XA) | 0.40 | 0.61 | 0.39 |
Baoji (BJ) | 0.37 | 0.58 | 0.36 |
Luoyang (LY) | 0.63 | 0.78 | −0.09 |
Linfen (LF) | 0.44 | 0.49 | 0.94 |
Yuncheng (YC) | 0.39 | 0.63 | −0.06 |
Jinzhong (JZ) | 0.79 | 0.88 | −0.08 |
Xianyang (XY) | 0.41 | 0.61 | 0.35 |
Weinan (WN) | 0.34 | 0.56 | 0.46 |
Tongchuan (TC) | 0.72 | 0.84 | 0.05 |
Sanmenxia (SMX) | 0.35 | 0.6 | 0.12 |
Lvliang (LL) | 0.78 | 0.64 | 0.81 |
City | R | IOA | NMB |
---|---|---|---|
Taiyuan (TY) | 0.66 | 0.79 | 0.02 |
Xi’an (XA) | 0.24 | 0.47 | −0.14 |
Baoji (BJ) | 0.06 | 0.42 | −0.54 |
Luoyang (LY) | 0.23 | 0.49 | −0.30 |
Linfen (LF) | 0.05 | 0.29 | 0.25 |
Yuncheng (YC) | 0.28 | 0.47 | 0.49 |
Jinzhong (JZ) | 0.45 | 0.64 | −0.34 |
Xianyang (XY) | 0.07 | 0.20 | 0.29 |
Weinan (WN) | −0.07 | 0.32 | −0.39 |
Tongchuan (TC) | 0.06 | 0.30 | 0.30 |
Sanmenxia (SMX) | 0.27 | 0.51 | −0.46 |
Lvliang (LL) | 0.33 | 0.52 | −0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Cao, L.; Zhang, T.; Kong, H. Simulations of Summertime Ozone and PM2.5 Pollution in Fenwei Plain (FWP) Using the WRF-Chem Model. Atmosphere 2023, 14, 292. https://doi.org/10.3390/atmos14020292
Wang Y, Cao L, Zhang T, Kong H. Simulations of Summertime Ozone and PM2.5 Pollution in Fenwei Plain (FWP) Using the WRF-Chem Model. Atmosphere. 2023; 14(2):292. https://doi.org/10.3390/atmos14020292
Chicago/Turabian StyleWang, Yuxi, Le Cao, Tong Zhang, and Haijiang Kong. 2023. "Simulations of Summertime Ozone and PM2.5 Pollution in Fenwei Plain (FWP) Using the WRF-Chem Model" Atmosphere 14, no. 2: 292. https://doi.org/10.3390/atmos14020292
APA StyleWang, Y., Cao, L., Zhang, T., & Kong, H. (2023). Simulations of Summertime Ozone and PM2.5 Pollution in Fenwei Plain (FWP) Using the WRF-Chem Model. Atmosphere, 14(2), 292. https://doi.org/10.3390/atmos14020292