Temporal Dynamics of CO2 Fluxes Measured with Eddy Covariance System in Maize, Winter Oilseed Rape and Winter Wheat Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental setup
2.3. Soil Sampling and Analysis
2.4. Eddy Covariance Measurements
2.5. Statistical Analyses
3. Results
3.1. Soil Properties
3.2. Meteorological and Soil Conditions
3.3. Vegetation Development
3.4. CO2 Fluxes
4. Discussion
4.1. Soil Properties and Plant Growth
4.2. CO2 Fluxes
4.2.1. CO2 Fluxes from Agro-Ecosystems
4.2.2. Effect of Plant Development Stages on CO2 Fluxes
4.2.3. CO2 Flux Values in Winter Wheat, Oilseed Rape and Maize Fields
4.2.4. Effect of Microclimatic Variables on CO2 Fluxes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; COM (2019) 640 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). Off. J. Eur. Union 2021, L 241, 1–17.
- European Environment Agency. GHG_proxy_2021. Available online: https://www.eea.europa.eu/data-and-maps/data/approximated-estimates-for-greenhouse-gas-emissions-5/2017-ghg-proxies/ghg_proxy_2017 (accessed on 29 November 2022).
- Eurostat. File:Quarterly GHG Figures for Q2 2022 with GDP Ver2.Xlsx. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Quarterly_GHG_Figures_for_Q2_2022_with_GDP_ver2.xlsx (accessed on 29 November 2022).
- Buendia, E.C.; Tanabe, K.; Kranjc, A.; Jamsranjav, B.; Fukuda, M.; Ngarize, S.; Osako, A.; Pyrozhenko, Y.; Shermanau, P.; Federici, S. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 1st ed.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- European Environment Agency. National Emissions Reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-agriculture (accessed on 30 November 2022).
- IPCC. Climate Change 2021: The Physical Science Basis, 1st ed.; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Mielcarek-Bocheńska, P.; Rzeźnik, W. Greenhouse Gas Emissions from Agriculture in EU Countries—State and Perspectives. Atmosphere 2021, 12, 1396. [Google Scholar] [CrossRef]
- van der Veen, R.; de Vries, M.; van de Pol, J.; van Santen, W.; Sinke, P.; de Vries, J.; Kampman, B.; Bergsma, G. Methane Reduction Potential in the EU between 2020 and 2030, 1st ed.; CE Delft: Delft, The Netherlands, 2022. [Google Scholar]
- Jaiswal, B.; Agrawal, M. Carbon Footprints of Agriculture Sector. In Carbon Footprints; Muthu, S.S., Ed.; Environmental Footprints and Eco-design of Products and Processes; Springer: Singapore, 2020; pp. 81–99. ISBN 9789811379154. [Google Scholar]
- Eurostat. Agricultural Production–Crops. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_crops (accessed on 5 December 2022).
- Statistics Poland. Production of Agricultural and Horticultural Crops. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/uprawy-rolne-i-ogrodnicze/produkcja-upraw-rolnych-i-ogrodniczych-w-2021-roku,9,20.html (accessed on 3 December 2022).
- Borzęcka-Walker, M.; Faber, A.; Jarosz, Z.; Syp, A.; Pudełko, R. Greenhouse Gas Emissions from Rape Seed Cultivation for FAME Production in Poland. J. Food Agric. Environ. 2013, 11, 1064–1068. [Google Scholar]
- Wiśniewski, P.; Kistowski, M. Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland. Atmosphere 2020, 11, 394. [Google Scholar] [CrossRef]
- Li, H.; Zhang, F.; Li, Y.; Wang, J.; Zhang, L.; Zhao, L.; Cao, G.; Zhao, X.; Du, M. Seasonal and Inter-Annual Variations in CO2 Fluxes over 10 Years in an Alpine Shrubland on the Qinghai-Tibetan Plateau, China. Agric. For. Meteorol. 2016, 228–229, 95–103. [Google Scholar] [CrossRef]
- Schmidt, M.; Reichenau, T.G.; Fiener, P.; Schneider, K. The Carbon Budget of a Winter Wheat Field: An Eddy Covariance Analysis of Seasonal and Inter-Annual Variability. Agric. For. Meteorol. 2012, 165, 114–126. [Google Scholar] [CrossRef]
- Guo, H.; Li, S.; Wong, F.-L.; Qin, S.; Wang, Y.; Yang, D.; Lam, H.-M. Drivers of Carbon Flux in Drip Irrigation Maize Fields in Northwest China. Carbon Balance Manag. 2021, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Maier, R.; Hörtnagl, L.; Buchmann, N. Greenhouse Gas Fluxes (CO2, N2O and CH4) of Pea and Maize during Two Cropping Seasons: Drivers, Budgets, and Emission Factors for Nitrous Oxide. Sci. Total Environ. 2022, 849, 157541. [Google Scholar] [CrossRef]
- Tao, F.; Li, Y.; Chen, Y.; Yin, L.; Zhang, S. Daily, Seasonal and Inter-Annual Variations in CO2 Fluxes and Carbon Budget in a Winter-Wheat and Summer-Maize Rotation System in the North China Plain. Agric. For. Meteorol. 2022, 324, 109098. [Google Scholar] [CrossRef]
- Verma, S.B.; Dobermann, A.; Cassman, K.G.; Walters, D.T.; Knops, J.M.; Arkebauer, T.J.; Suyker, A.E.; Burba, G.G.; Amos, B.; Yang, H.; et al. Annual Carbon Dioxide Exchange in Irrigated and Rainfed Maize-Based Agroecosystems. Agric. For. Meteorol. 2005, 131, 77–96. [Google Scholar] [CrossRef]
- Peng, X.; Ma, J.; Cai, H.; Wang, Y. Carbon Balance and Controlling Factors in a Summer Maize Agroecosystem in the Guanzhong Plain, China. J. Sci. Food Agric. 2023, 103, 1761–1774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lei, H.; Yang, D.; Xiong, L.; Liu, P.; Fang, B. Decadal Variation in CO2 Fluxes and Its Budget in a Wheat and Maize Rotation Cropland over the North China Plain. Biogeosciences 2020, 17, 2245–2262. [Google Scholar] [CrossRef] [Green Version]
- Lehuger, S.; Gabrielle, B.; Larmanou, E.; Laville, P.; Cellier, P.; Loubet, B. Predicting the Global Warming Potential of Agro-Ecosystems. Biogeosciences Discuss. 2007, 4, 1059–1092. [Google Scholar] [CrossRef]
- Wen, S.; Gao, Q.; Gao, Z.; Lu, J. Variation Characteristics of Carbon Flux during the Whole Growth Period of Winter Rapeseed in Central Hunan Province. Chin. J. Oil Crop Sci. 2022, 44, 581–588. [Google Scholar] [CrossRef]
- Richling, A.; Solon, J.; Macias, A.; Balon, J.; Borzyszkowski, J.; Kistowski, M. Regional Physical Geography of Poland, 1st ed.; Bogucki Wyd. Naukowe: Poznań, Poland, 2021. (In Polish) [Google Scholar]
- Górniak, A. Climate of the Podlaskie Voivodeship in the Time of Global Warming, 1st ed.; Wydawnictwo Uniwersytetu w Białymstoku: Białystok, Poland, 2021. (In Polish) [Google Scholar]
- IUSS Working Group WRB World Reference Base for Soil Resources 2014. Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Tome, Italy, 2015. [Google Scholar]
- PN-R-04032:1998; Soil Sample Collecting and Analysis of Soil Texture. Polski Komitet Normalizacyjny: Warsaw, Poland, 1998. (In Polish)
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Evaluation of Soil and Plant Properties. Catalog, 1st ed.; Instytut Ochrony Środowiska: Warsaw, Poland, 1991. (In Polish) [Google Scholar]
- Moncrieff, J.; Clement, R.; Finnigan, J.; Meyers, T. Averaging, Detrending, and Filtering of Eddy Covariance Time Series. In Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis; Atmospheric and Oceanographic Sciences Library; Lee, X., Massman, W., Law, B., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 7–31. ISBN 978-1-4020-2265-4. [Google Scholar]
- Moncrieff, J.B.; Masheder, J.M.; de Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, S.; Verhoef, A. A System to Measure Surface Flux Momentum, Sensible Heat, Water Vapor and Carbon Dioxide. J. Hydrol. 1997, 188–189, 589–611. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of Flux Measurements for Density Effects Due to Heat and Water Vapour Transfer. Quat. J. R. Met. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Van Dijk, A.; Moene, A.F.; Debruin, H.A.R. The Principles of Surface Flux Physics: Theory, Practice and Description of the ECPACK Library; Internal Report 2004/1; Meteorology and Air Quality Group, Wageningen University: Wageningen, The Netherlands, 2004. [Google Scholar]
- Vickers, D.; Mahrt, L. Quality Control and Flux Sampling Problems for Tower and Aircraft Data. J. Atmos. Oceanic Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Parameterisation for Flux Footprint Predictions. Bound.-Layer Meteorol. 2004, 112, 503–523. [Google Scholar] [CrossRef]
- Egnér, H.; Riehm, H.; Domingo, W.R. Studies on Chemical Soil Analysis as a Basis for Assessing the Nutrient Status of Soils. II. Chemical Extraction Methods for Phosphorus and Potassium Determination. Kungliga Lantbrukshögskolans Annaler 1960, 26, 199–215. (In German) [Google Scholar]
- du Plessis, J. Maize Production, 1st ed.; Department of Agriculture, Republic of South Africa: Pretoria, South Africa, 2003.
- Rutkowski, J. Technology of Maize Cultivation–From Sowing to Harvesting, 1st ed.; Warmińsko-Mazurski Ośrodek Doradztwa Rolniczego: Olsztyn, Poland, 2018. (In Polish) [Google Scholar]
- Kaniuczak, Z.; Pruszyński, S. Methodology of Integrated Maize Production, 3rd ed.; Główny Inspektorat Ochrony Roślin i Nasiennictwa: Warsaw, Poland, 2020. (In Polish) [Google Scholar]
- Cofas, E. The Dynamics of Maize Production in the Climate Factors Variability Conditions. In Proceedings of the Agrarian Economy and Rural Development–Realities and Perspectives for Romania, 9th Edition of the International Symposium, Bucharest, Bucharest, 20–21 November 2018; The Research Institute for Agricultural Economy and Rural Development (ICEADR): Bucharest, Bucharest, 2018; pp. 239–245. [Google Scholar]
- Lino, A.C.M.; Buzetti, S.; Teixeira Filho, M.C.M.; Galindo, F.S.; Maestrelo, P.R.; Rodrigues, M.A.D.C. Effect of Phosphorus Applied as Monoammonium Phosphate-Coated Polymers in Corn Culture under No-Tillage System. Semin. Ciências Agrárias SCA 2018, 39, 99. [Google Scholar] [CrossRef]
- Pereira, N.C.M.; Galindo, F.S.; Gazola, R.P.D.; Dupas, E.; Rosa, P.A.L.; Mortinho, E.S.; Filho, M.C.M.T. Corn Yield and Phosphorus Use Efficiency Response to Phosphorus Rates Associated With Plant Growth Promoting Bacteria. Front. Environ. Sci. 2020, 8, 40. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Potassium Influences on Yield and Quality Production for Maize, Wheat, Soybean and Cotton. Physiol. Plant. 2008, 133, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Madar, R.; Singh, Y.V.; Meena, M.C.; Das, T.K.; Gaind, S.; Verma, R.K. Potassium and Residue Management Options to Enhance Productivity and Soil Quality in Zero Till Maize–Wheat Rotation. Clean–Soil Air Water 2020, 48, 1900316. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, W.; Chen, X.; Li, C.; Zhang, F.; Jiang, L.; Liu, Z.; Xiao, K.; Assaraf, M.; Imas, P. Potassium Fertilization on Maize under Different Production Practices in the North China Plain. Agron. J. 2011, 103, 822–829. [Google Scholar] [CrossRef]
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop Planting Dates: An Analysis of Global Patterns: Global Crop Planting Dates. Glob. Ecol. Biogeog. 2010, 19, 607–620. [Google Scholar] [CrossRef]
- Horoszkiewicz-Janka, J.; Korbas, M.; Mrówczyński, M. Methodology of Integrated Protection of Winter and Spring Wheat for Producers, 1st ed.; Instytut Ochrony Roślin Państwowy Instytut Badawczy: Poznań, Poland, 2013. (In Polish) [Google Scholar]
- Tomicka, I.; Bujnowska, Z. Crop Production, 2nd ed.; Państwowe Wydawnictwa Rolnicze i Leśne: Warsaw, Poland, 1995; Volume 2. (In Polish) [Google Scholar]
- Nleya, T. Chapter 4: Winter Wheat Planting Guide. Available online: https://extension.sdstate.edu/igrow-wheat-best-management-practices-wheat-production (accessed on 28 December 2022).
- Zając, T.; Klimek-Kopyra, A.; Oleksy, A.; Lorenc-Kozik, A.; Ratajczak, K. Analysis of Yield and Plant Traits of Oilseed Rape (Brassica Napus L.) Cultivated in Temperate Region in Light of the Possibilities of Sowing in Arid Areas. Acta Agrobot. 2016, 69, 1–13. [Google Scholar] [CrossRef]
- Pospišil, M.; Brčić, M.; Husnjak, S. Suitability of Soil and Climate for Oilseed Rape Production in the Republic of Croatia. Agric. Conspec. Sci. 2011, 76, 35–39. [Google Scholar]
- Ray, R.L.; Griffin, R.W.; Fares, A.; Elhassan, A.; Awal, R.; Woldesenbet, S.; Risch, E. Soil CO2 Emission in Response to Organic Amendments, Temperature, and Rainfall. Sci. Rep. 2020, 10, 5849. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Z.; Hu, Z.; Yin, N.; Islam, A.R.M.T.; Wei, Z. Characteristics and Influencing Factors of Carbon Fluxes in Winter Wheat Fields under Elevated CO2 Concentration. Environ. Pollut. 2022, 307, 119480. [Google Scholar] [CrossRef] [PubMed]
- Paustian, K.; Six, J.; Elliott, E.T.; Hunt, H.W. Management Options for Reducing CO2 Emissions from Agricultural Soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- Xu, L.; Baldocchi, D.D. Seasonal Variation in Carbon Dioxide Exchange over a Mediterranean Annual Grassland in California. Agric. For. Meteorol. 2004, 123, 79–96. [Google Scholar] [CrossRef]
- Jans, W.W.P.; Jacobs, C.M.J.; Kruijt, B.; Elbers, J.A.; Barendse, S.; Moors, E.J. Carbon Exchange of a Maize (Zea Mays L.) Crop: Influence of Phenology. Agric. Ecosys. Environ. 2010, 139, 316–324. [Google Scholar] [CrossRef]
- Wang, W.; Liao, Y.; Wen, X.; Guo, Q. Dynamics of CO2 Fluxes and Environmental Responses in the Rain-Fed Winter Wheat Ecosystem of the Loess Plateau. China. Sci. Total Environ. 2013, 461–462, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Eshonkulov, R.A. Turbulent Exchange of Energy, Water and Carbon between Crop Canopies and the Atmosphere: An Evaluation of Multi-Year, Multi-Site Eddy Covariance Data. Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany, 21 March 2019. [Google Scholar]
- Zhang, L.; Sun, R.; Xu, Z.; Qiao, C.; Jiang, G. Diurnal and Seasonal Variations in Carbon Dioxide Exchange in Ecosystems in the Zhangye Oasis Area, Northwest China. PLoS ONE 2015, 10, e0120660. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, L.; Yang, H.; Li, Y. Relationships between Carbon Fluxes and Environmental Factors in a Drip-Irrigated, Film-Mulched Cotton Field in Arid Region. PLoS ONE 2018, 13, e0192467. [Google Scholar] [CrossRef] [Green Version]
Crop | Soil Texture Soil Fraction (mm) | pH | SOC | N | C/N | P2O5 | K2O | |||
---|---|---|---|---|---|---|---|---|---|---|
2–0.05 | 0.05–0.002 | <0.002 | H2O | KCl | ||||||
Maize | 79 ± 1 a | 20 ± 1 a | 1 ± 1 a | 6.5 ± 0.4 a | 5.6 ± 0.4 a | 12.0 ± 0.4 a | 1.0 ± 0.1 a | 11.6 ± 0.4 a | 28.7 ± 2.3 a | 22.3 ± 0.8 a |
Oilseed rape | 74 ± 4 a | 24 ± 3 a | 2 ± 1 a | 6.3 ± 0.2 a | 5.4 ± 0.5 a | 9.1 ± 1.8 b | 0.9 ± 0.2 a | 9.4 ± 0.5 b | 29.7 ± 10.4 a | 17.3 ± 8.5 a |
Wheat | 66 ± 3 b | 30 ± 1 b | 4 ± 2 b | 6.5 ± 0.6 a | 5.6 ± 0.9 a | 13.8 ± 1.0 a | 1.5 ± 0.2 b | 9.1 ± 0.3 b | 12.5 ± 4.3 b | 18.0 ± 5.6 a |
Date | Ta | RH | Rg | Rn | PPFD | SWC | Ts |
---|---|---|---|---|---|---|---|
Wheat field | |||||||
April 20 | 9.64 | 49.69 | 552.79 | 313.70 | 1133.70 | 0.17 | 14.83 |
May 20 | 17.49 | 50.00 | 683.15 | 443.54 | 1369.88 | 0.20 | 22.69 |
June 7 | 16.04 | 39.74 | 830.96 | 547.33 | 1666.39 | 0.17 | 24.07 |
June 21 | 18.96 | 74.83 | 587.12 | 425.87 | 1221.42 | 0.17 | 22.81 |
July 4 | 19.48 | 53.25 | 567.84 | 376.98 | 1162.47 | 0.20 | 21.63 |
July 18 | 20.36 | 55.84 | 559.99 | 433.82 | 1220.34 | 0.23 | 23.58 |
August 12 | 17.61 | 47.44 | 651.69 | 408.85 | 1308.96 | 0.26 | 16.36 |
September 1 | 20.51 | 54.32 | 529.41 | 267.87 | 1076.29 | 0.10 | 25.21 |
Oilseed rape field | |||||||
April 26 | 7.51 | 58.36 | 459.62 | 246.06 | 931.03 | 0.07 | 11.60 |
May 11 | 21.07 | 48.60 | 597.37 | 358.03 | 1129.51 | 0.05 | 20.98 |
May 24 | 22.59 | 38.06 | 846.81 | 528.68 | 1740.68 | 0.06 | 20.66 |
June 9 | 15.92 | 49.67 | 766.30 | 496.95 | 1564.39 | 0.07 | 20.52 |
June 24 | 27.76 | 53.25 | 777.71 | 555.45 | 1631.78 | 0.05 | 25.96 |
July 05 | 21.50 | 45.58 | 726.03 | 511.83 | 1284.06 | 0.08 | 24.48 |
July 18 | 18.65 | 61.79 | 399.62 | 281.93 | 768.36 | 0.18 | 19.85 |
August 12 | 18.21 | 43.79 | 531.09 | 290.68 | 1055.89 | 0.15 | 23.39 |
September 1 | 21.65 | 52.65 | 571.11 | 330.57 | 1212.29 | 0.05 | 27.98 |
September 14 | 19.86 | 50.59 | 632.60 | 327.22 | 1355.50 | 0.03 | 26.46 |
Maize field | |||||||
May 13 | 20.64 | 49.87 | 535.68 | 304.11 | 1126.53 | 0.09 | 26.29 |
May 19 | 15.40 | 29.47 | 398.19 | 214.14 | 808.27 | 0.13 | 20.40 |
June 3 | 22.65 | 43.70 | 799.48 | 498.77 | 1629.50 | 0.14 | 30.03 |
June 14 | 20.57 | 44.93 | 568.70 | 327.36 | 1164.00 | 0.04 | 25.92 |
June 28 | 20.67 | 55.36 | 524.84 | 330.34 | 1076.65 | 0.02 | 28.83 |
July 25 | 26.50 | 60.25 | 779.95 | 529.63 | 1554.20 | 0.04 | 35.79 |
September 2 | 21.79 | 55.43 | 662.98 | 328.18 | 1338.19 | 0.02 | 27.07 |
CO2 Flux | Ta | RH | Rg | Rn | PPFD | SWC | Ts | |
---|---|---|---|---|---|---|---|---|
Wheat field | ||||||||
CO2 flux | 1 | −0.03 | −0.11 | −0.46 | −0.47 | −0.44 | −0.01 | −0.47 |
Ta | 1 | 0.49 | 0.11 | 0.27 | 0.14 | 0.35 | 0.53 | |
RH | 1 | −0.24 | −0.14 | −0.22 | −0.13 | 0.06 | ||
Rg | 1 | 0.97 | 0.99 | 0.18 | 0.30 | |||
Rn | 1 | 0.98 | 0.21 | 0.41 | ||||
PPFD | 1 | 0.17 | 0.32 | |||||
SWC | 1 | 0.32 | ||||||
Ts | 1 | |||||||
Oilseed rape field | ||||||||
CO2 flux | 1 | −0.14 | 0.21 | −0.33 | −0.26 | −0.38 | 0.62 | 0.15 |
Ta | 1 | −0.46 | 0.45 | 0.48 | 0.39 | −0.37 | 0.56 | |
RH | 1 | −0.58 | −0.52 | −0.51 | 0.05 | −0.31 | ||
Rg | 1 | 0.96 | 0.91 | −0.12 | 0.29 | |||
Rn | 1 | 0.87 | −0.04 | 0.28 | ||||
PPFD | 1 | −0.21 | 0.26 | |||||
SWC | 1 | −0.37 | ||||||
Ts | 1 | |||||||
Maize field | ||||||||
CO2 flux | 1 | −0.20 | −0.14 | −0.07 | −0.21 | −0.04 | 0.44 | −0.38 |
Ta | 1 | −0.05 | 0.56 | 0.57 | 0.58 | −0.14 | 0.86 | |
RH | 1 | −0.02 | −0.06 | −0.05 | −0.50 | 0.02 | ||
Rg | 1 | 0.92 | 0.96 | 0.16 | 0.54 | |||
Rn | 1 | 0.86 | 0.17 | 0.59 | ||||
PPFD | 1 | 0.14 | 0.56 | |||||
SWC | 1 | −0.17 | ||||||
Ts | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czubaszek, R.; Wysocka-Czubaszek, A. Temporal Dynamics of CO2 Fluxes Measured with Eddy Covariance System in Maize, Winter Oilseed Rape and Winter Wheat Fields. Atmosphere 2023, 14, 372. https://doi.org/10.3390/atmos14020372
Czubaszek R, Wysocka-Czubaszek A. Temporal Dynamics of CO2 Fluxes Measured with Eddy Covariance System in Maize, Winter Oilseed Rape and Winter Wheat Fields. Atmosphere. 2023; 14(2):372. https://doi.org/10.3390/atmos14020372
Chicago/Turabian StyleCzubaszek, Robert, and Agnieszka Wysocka-Czubaszek. 2023. "Temporal Dynamics of CO2 Fluxes Measured with Eddy Covariance System in Maize, Winter Oilseed Rape and Winter Wheat Fields" Atmosphere 14, no. 2: 372. https://doi.org/10.3390/atmos14020372
APA StyleCzubaszek, R., & Wysocka-Czubaszek, A. (2023). Temporal Dynamics of CO2 Fluxes Measured with Eddy Covariance System in Maize, Winter Oilseed Rape and Winter Wheat Fields. Atmosphere, 14(2), 372. https://doi.org/10.3390/atmos14020372