Morphological and Mineralogical Characteristics of Atmospheric Microparticles and Chemical Pollution of Street Dust in the Moscow Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Calculation of Dust Load
2.3. Granulometric Composition of the Samples
2.4. Statistical Analysis
2.5. Individual Particle Analysis
2.6. SEM-EDX Analysis (Energy Dispersive X-ray Analysis)
2.7. Heavy Metals in Road Dust
2.8. Natural Conditions of the Research Area
3. Results and Discussion
3.1. Investigation of Atmospheric Microparticles Sampled on the Roof
3.2. Features of the Surface Morphology of Mineral Grains
3.3. Road Dust Research
3.4. Content of Heavy Metals and Trace Elements in Road Dust Samples
3.5. Enrichment Factor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullaev, S.F. Comprehensive Studies of Dust and Gas Impurities in Arid Zones and Their Impact on the Regional Climatic Regime of the Southeastern Part of Central Asia: D. Sc.: 25.00.30; Russian State Hydrometeorological University: St. Petersburg, Russia, 2014. [Google Scholar]
- Katola, V.M. Dust: Sources of formation, general characteristics, dust diseases (short review). Bull. Physiol. Pathol. Respir. 2018, 67, 111–116. [Google Scholar] [CrossRef]
- Shao, L.Y.; Liu, P.J.; Jones, T.; Yang, S.S.; Wang, W.H.; Zhang, D.Z.; Li, Y.W.; Yang, C.-X.; Xing, J.P.; Hou, C.; et al. A review of atmospheric individual particle analyses: Methodologies and applications in environmental research. Gondwana Res. 2022, 110, 347–369. [Google Scholar] [CrossRef]
- Li, J.; Shao, L.Y.; Chang, L.L.; Xing, J.P.; Wang, W.H.; Li, W.J.; Zhang, D.Z. Physicochemical Characteristics and Possible Sources of Individual Mineral Particles in a Dust Storm Episode in Beijing, China. Atmosphere 2018, 9, 269. [Google Scholar] [CrossRef] [Green Version]
- Kellogg, C.A.; Griffin, D.W. Aerobiology and the global transport of desert dust. Trends Ecol. Evol. 2006, 21, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Shao, L.Y.; Zhang, D.Z.; Li, Y.W.; Li, W.J.; Liu, P.J.; Xing, J.P. Mineralogical similarities and differences of dust storm particles at Beijing from deserts in the north and northwest. Sci. Total Environ. 2022, 803, 149980. [Google Scholar] [CrossRef]
- Charlesworth, S.; Everett, M. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 2003, 29, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.; Merolla, L.; Gibbons, W.; Greenwell, L.; Jones, T.; Richards, R. Variations in the source, metal content and bioreactivity of technogenic aerosols: A case study from Port Talbot, Wales, UK. Sci. Total Environ. 2004, 333, 59–73. [Google Scholar] [CrossRef]
- Suryawanshi, P.V.; Rajaram, B.S.; Bhanarkar, A.D.; Chalapati Rao, C.V. Determining heavy metal contamination of road dust in Delhi, India. Atmósfera 2016, 29, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Garofalide, S.; Postolachi, C.; Cocean, A.; Cocean, G.; Motrescu, I.; Cocean, I.; Munteanu, B.S.; Prelipceanu, M.; Gurlui, S.; Leontie, L. Saharan Dust Storm Aerosol Characterization of the Event (9 to 13 May 2020) over European AERONET Sites. Atmosphere 2022, 13, 493. [Google Scholar] [CrossRef]
- Kasimov, N.S. Enrichment of road dust particles and adjacent environments with metals and metalloids in eastern Moscow. Urban Clim. 2020, 32, 100638. [Google Scholar] [CrossRef]
- Hristova, E.S.; Manousakas, M.I. Special Issue: Air Pollution at the Urban and Regional Level: Sources, Sinks, and Transportation. Atmosphere 2023, 14, 132. [Google Scholar] [CrossRef]
- Shao, L.Y.; Li, J.; Zhang, M.Y.; Wang, X.M.; Li, Y.W.; Jones, T.; Feng, X.L.; Silva, L.F.O.; Li, W.J. Morphology, composition and mixing state of individual airborne particles: Effects of the 2017 Action Plan in Beijing, China. J. Clean. Prod. 2021, 329, 129748. [Google Scholar] [CrossRef]
- Yesilkanat, C.M.; Kobya, Y. Spatial characteristics of ecological and health risks of toxic heavy metal pollution from road dust in the Black Sea coast of Turkey. Geoderma Reg. 2021, 25, e00388. [Google Scholar] [CrossRef]
- Veremchuk, L.; Mineeva, E. Impact of atmospheric microparticles and heavy metals on external respiration function of urbanized territory population. Russ. Open Med. J. 2017, 6, 402. [Google Scholar] [CrossRef]
- Maier, K.L.; Alessandrini, F.; Beck-Speier, I.; Hofer, T.P.J.; Diabaté, S.; Bitterle, E.; Stöger, T.; Jakob, T.; Behrendt, H.; Horsch, M.; et al. Health Effects of Ambient Particulate Matter—Biological Mechanisms and Inflammatory Responses to In Vitro and In Vivo Particle Exposures. Inhal. Toxicol. 2008, 20, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Khurana Hershey, G. Genetic and epigenetic influence on the response to environmental particulate matter. J. Allergy Clin. Immunol. 2012, 129, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. J. Environ. Sci. Health 2008, 26, 339–362. [Google Scholar] [CrossRef]
- Veremchuk, L.V.; Vitkina, T.I.; Barskova, L.S.; Gvozdenko, T.A.; Mineeva, E.E. Estimation of the Size Distribution of Suspended Particulate Matters in the Urban Atmospheric Surface Layer and Its Influence on Bronchopulmonary Pathology. Atmosphere 2021, 12, 1010. [Google Scholar] [CrossRef]
- Zanobetti, A.; Luttmann-Gibson, H.; Horton, E.S.; Cohen, A.; Coull, B.A.; Hoffmann, B.; Schwartz, J.D.; Mittleman, M.; Li, Y.; Stone, P.H.; et al. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: A repeated-measures study. Environ. Health Perspect. 2014, 122, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Bind, M.A.; Baccarelli, A.; Zanobetti, A.; Tarantini, L.; Suh, H.; Vokonas, P.; Schwartz, J. Air pollution and markers of coagulation, inflammation, and endothelial function: Associations and epigene-environment interactions in an elderly cohort. Epidemiology 2012, 23, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Nafstad, P. Lung cancer and air pollution: A 27 year follow up of 16 209 Norwegian men. Thorax 2003, 58, 1071–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta, J.A.; Faz, Á.; Kalbitz, K.; Jansen, B.; Martínez-Martínez, S. Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment. J. Environ. Monit. 2011, 13, 3087–3096. [Google Scholar] [CrossRef]
- Ladonin, D.V.; Mikhailova, A.P. Heavy metals and arsenic in soils and street dust of the South-Eastern administrative district: Results of multi-year research. Eurasian Soil Sci. 2020, 11, 1635–1644. [Google Scholar] [CrossRef]
- Prokof’Eva, T.V.; Shoba, S.A.; Lysak, L.V.; Ivanova, A.E.; Glushakova, A.M.; Shishkov, V.A.; Lapygina, E.V.; Shilaika, P.D.; Glebova, A.A. Organic constituents and biota in the urban atmospheric solid aerosol: Potential effects on urban soils. Eurasian Soil Sci. 2021, 54, 1532–1545. [Google Scholar] [CrossRef]
- MalAmiri, N.; Rashki, A.; Hosseinzadeh, S.R.; Kaskaoutis, D. Mineralogical, geochemical, and textural characteristics of soil and airborne samples during dust storms in Khuzestan, southwest Iran. Chemosphere 2022, 286, 131879. [Google Scholar] [CrossRef] [PubMed]
- Awadh, S.M. Geochemistry and mineralogical composition of the airborne particles of sand dunes and dust storms settled in Iraq and their environmental impacts. Environ. Earth Sci. 2012, 66, 2247–2256. [Google Scholar] [CrossRef]
- Urusevskaya, I.S.; Kolesnikova, V.M.; Vertyankina, V.Y. Anthropogenic soils on the territory of the New Jerusalem Monastery, Moscow region. Eurasian Soil Sci. 2018, 51, 1095–1104. [Google Scholar] [CrossRef]
- Kolesnikova, V.M.; Urusevskaya, I.S.; Vertyankina, V.Y. Reflections on the modern soil cover of the New Jerusalem Monastery: The history of anthropogenic landscape transformation. In Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services; Vasenev, V., Dovletyarova, E., Cheng, Z., Prokof’eva, T., Morel, J., Ananyeva, N., Eds.; SUITMA 2017; Springer Geography: New York, NY, USA, 2019; pp. 42–50. [Google Scholar] [CrossRef]
- Filippova, O.I.; Kholodov, V.A.; Safronova, N.A.; Yudina, A.V.; Kulikova, N.A. Particle-Size, Microaggregate-Size, and Aggregate-Size Distributions in Humus Horizons of the Zonal Sequence of Soils in European Russia. Eurasian Soil Sci. 2019, 52, 300–312. [Google Scholar] [CrossRef]
- Sileva, T.M.; Ivanov, V.V.; Shoba, S.A. Diagnostics of minerals of large fractions of soils. In Student Book; MAKS Press: Moscow, Russia, 2015; p. 80. [Google Scholar]
- Shishov, V.L.; Voitovich, N.V. Soils of the Moscow Region and Their Use; Soil Dokuchaev in-t: Moscow, Russia, 2002; p. 500. [Google Scholar]
- Suslova, E.G. Forests of the Moscow region. Ecosyst. Ecol. Dyn. 2019, 1, 1–72. [Google Scholar]
- Urusevskaya, I.S.; Kolesnikova, V.M.; Timofeeva, A.S. Soils of the Istra valley within the New Jerusalem monastery and its surroundings. Moscow Univ. Soil Sci. Bull. 2015, 70, 153–160. [Google Scholar] [CrossRef]
- Environmental Passport of the City of Istra. Available online: http://ecopassmo.mosreg.ru/media/region_doc/g_o_istra.pdf (accessed on 15 November 2021).
- Elcheva, I.O.; Zubkova, V.M.; Gaponenko, A.V. Assessment of the level of soil pollution in the city of Istra. Bull. Mosc. State Univ. Ser. Nat. Sci. 2018, 1, 42–50. [Google Scholar]
- Gradusov, B. P Granulo-Petrographic-Mineralogical Soil Discharges. National Atlas of Soils of the Russian Federation M: Astrel: AST, 2011.-Maps. Scale 1:30 000 000. 2011, 214–215. [In Russian]. Available online: https://soil-db.ru/soilatlas/razdel-5-pochvennyy-pokrov/granulo-petrografo-mineralogicheskie-razryady-pochv (accessed on 1 November 2021).
- Coch, N.K.; Krinsley, D.H. Comparison of stratigraphic and electron microscopic studies in Virginia Pleistocene coastal sediments. J. Geol. 1971, 79, 426–437. [Google Scholar] [CrossRef]
- Alekseeva, V.A. Movement and diagenetic transformation of quartz grains and their paleogeographic interpretation. Vestn. MGU. Ser. 5. Geogr. 2003, 4, 40–46. [Google Scholar]
- Armstrong-Altrin, J.S.; Natalhy-Pineda, O. Microtextures of detrital sand grains from the Tecolutla, Nautla, and Veracruz beaches, western Gulf of Mexico, Mexico: Implications for depositional environment and paleoclimate. Arab. J. Geosci. 2014, 7, 4321–4333. [Google Scholar] [CrossRef]
- Krinsley, D.H.; Doornkamp, J.C. Atlas of Quartz Sand Surface Textures; Cambridge University Press: Cambridge, UK, 1973; p. 53. [Google Scholar]
- Ramos-Vazquez, M. Provenance and paleoenvironmental significance of microtextures in quartz and zircon grains from the Paseo del Mar and Bosque beaches, Gulf of Mexico. J. Earth Syst. Sci. 2020, 129, 225. [Google Scholar] [CrossRef]
- Itamiya, H.; Sugita, R.; Sugai, T. Analysis of the surface microtextures and morphologies of beach quartz grains in Japan and implications for provenance research. Prog. Earth Planet. Sci. 2019, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.Y.; Li, Y.W.; Jones, T.; Santosh, M.; Liu, P.J.; Zhang, M.Y.; Xu, L.; Li, W.J.; Lu, J.; Yang, C.X.; et al. Airborne microplastics: A review of current perspectives and environmental implications. J. Clean. Prod. 2022, 347, 131048. [Google Scholar] [CrossRef]
- Liu, P.; Shao, L.; Li, Y.; Jones, T.; Cao, Y.; Yang, C.-X.; Zhang, M.; Santosh, M.; Feng, X.; Bérubé, K. Microplastic atmospheric dustfall pollution in urban environment: Evidence from the types, distribution, and probable sources in Beijing, China. Sci. Total Environ. 2022, 838, 155989. [Google Scholar] [CrossRef]
- He, Y.; Peng, C.; Zhang, Y.; Guo, Z.; Xiao, X.; Kong, L. Comparison of heavy metals in urban soil and dust in cities of China: Characteristics and health risks. Int. J. Environ. Sci. Technol. 2022, 20, 2247–2258. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine river. Geo J. 1969, 2, 108–118. [Google Scholar]
- Taghavi, S.N.; Kamani, H.; Dehghani, M.H.; Nabizadeh, R.; Afshari, N.; Mahvi, A.H. Assessment of Heavy Metals in Street Dusts of Tehran Using Enrichment Factor and Geo-Accumulation Index. Health Scope 2019, 8, e57879. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khademi, H.; Gabarrón, M.; Abbaspour, A.; Martínez-Martínez, S.; Faz, A.; Acosta, J.A. Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere 2019, 217, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, C.L. Riverine Composition and Estuarine Geochemistry of Particulate Metals in China—Weathering Features, Anthropogenic Impact and Chemical Fluxes. Estuar. Coast. Shelf Sci. 2002, 54, 1051–1070. [Google Scholar] [CrossRef]
Heavy Metal | Cr | Mn | Fe | Co | Ni | Cu | Zn | Sr | Cd | Pb |
---|---|---|---|---|---|---|---|---|---|---|
road dust samples | ||||||||||
Mean | 27.15 | 357.84 | 14.086.56 | 5.34 | 12.16 | 23.09 | 73.15 | 57.87 | 0.19 | 11.42 |
Median | 23.68 | 334.5 | 13.670 | 5.22 | 12.73 | 18.3 | 68.44 | 57.1 | 0.2 | 11.75 |
Standard deviation | 7.48 | 56.15 | 1943.84 | 0.25 | 0.93 | 13.73 | 26.94 | 11.45 | 0.05 | 2.63 |
Min | 19.54 | 296.9 | 11.670 | 5.09 | 10.66 | 10.24 | 42.57 | 44.14 | 0.12 | 7.4 |
Max | 37.28 | 437.9 | 17.210 | 5.75 | 12.91 | 43.34 | 107.9 | 72.27 | 0.25 | 14.62 |
Coefficients variation, % | 27.54 | 15.69 | 13.80 | 4.60 | 7.62 | 59.47 | 36.83 | 19.79 | 25.24 | 23.02 |
Background Soil | ||||||||||
Mean | 21.93 | 495.75 | 13.655.67 | 4.8 | 11.35 | 8.82 | 37.52 | 37.45 | 0.16 | 8.7 |
Median | 22.19 | 494.18 | 13.615 | 4.88 | 11.2 | 9.14 | 37.04 | 37.15 | 0.17 | 9.05 |
Standard deviation | 0.85 | 10.63 | 157.98 | 0.19 | 0.34 | 0.73 | 1.26 | 0.52 | 0.01 | 1.24 |
Min | 20.98 | 486 | 13.522 | 4.58 | 11.1 | 7.98 | 36.58 | 37.15 | 0.15 | 7.32 |
Max | 22.63 | 507.08 | 13.830 | 4.94 | 11.74 | 9.33 | 38.95 | 38.05 | 0.17 | 9.72 |
Coefficients variation, % | 3.90 | 2.14 | 1.16 | 4.03 | 3.03 | 8.30 | 3.35 | 1.39 | 7.71 | 14.26 |
Class | Igeo | |
---|---|---|
Value | Designation of Street Dust Quality | |
0 | Igeo ≤ 0 | Not polluted |
1 | 0 < Igeo ≤ 1 | No to moderate pollution |
2 | 1 < Igeo ≤ 2 | Moderately polluted |
3 | 2 < Igeo ≤ 3 | Moderately to heavily polluted |
4 | 3 < Igeo ≤ 4 | Heavily polluted |
5 | 4 < Igeo ≤ 5 | Heavily to extremely polluted |
6 | Igeo > 5 | Extremely polluted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolesnikova, V.M.; Salimgareeva, O.A.; Ladonin, D.V.; Vertyankina, V.Y.; Shelegina, A.S. Morphological and Mineralogical Characteristics of Atmospheric Microparticles and Chemical Pollution of Street Dust in the Moscow Region. Atmosphere 2023, 14, 403. https://doi.org/10.3390/atmos14020403
Kolesnikova VM, Salimgareeva OA, Ladonin DV, Vertyankina VY, Shelegina AS. Morphological and Mineralogical Characteristics of Atmospheric Microparticles and Chemical Pollution of Street Dust in the Moscow Region. Atmosphere. 2023; 14(2):403. https://doi.org/10.3390/atmos14020403
Chicago/Turabian StyleKolesnikova, Varvara M., Olga A. Salimgareeva, Dmitry V. Ladonin, Victoria Y. Vertyankina, and Anna S. Shelegina. 2023. "Morphological and Mineralogical Characteristics of Atmospheric Microparticles and Chemical Pollution of Street Dust in the Moscow Region" Atmosphere 14, no. 2: 403. https://doi.org/10.3390/atmos14020403
APA StyleKolesnikova, V. M., Salimgareeva, O. A., Ladonin, D. V., Vertyankina, V. Y., & Shelegina, A. S. (2023). Morphological and Mineralogical Characteristics of Atmospheric Microparticles and Chemical Pollution of Street Dust in the Moscow Region. Atmosphere, 14(2), 403. https://doi.org/10.3390/atmos14020403