Distribution, Transport, and Impact on Air Quality of Two Typical Dust Events in China in 2021
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area
2.2. Satellite Data
2.3. MERRA-2 Dust Mixing Ratio
2.4. Ground Station Data
2.5. HYSPLIT Model
2.6. The Structure of 3D-CWT Model
3. Results and Discussion
3.1. Spatial-Temporal Distribution of Dust Events
3.2. Dust Transport Paths
3.3. Impact on Urban Air Quality
4. Conclusions
- (1)
- Both events had comparable impact areas, according to satellite, ground, and reanalysis data, including Northeast, North, Northwest, Central-South, and East China. China’s Northwest, North, and Northeast regions experienced intense dust storms during the 3.15 event. The vertical distribution of dust was 0–5 km in 1.12 event and 0–10 km in 3.15 event.
- (2)
- The dust from the 1.12 event originated in western Inner Mongolia and southern Mongolia, whereas the dust from the 3.15 event was predominantly from southern Mongolia, according to the HYSPLIT model and the 3D-CWT model. Both of these dust sources have eastward and southeastward transport paths.
- (3)
- Near-surface dust was primarily transmitted from 0–3 km in downstream cities. The contribution of dust was greater in the 500–1500 m height range. The returning flow of dust impacted the majority of cities. The eastern coast of China was extremely vulnerable to the return flow of dust from southern Mongolia. Southern cities such as Hunan and Zhejiang, which are far from the dust source, were also vulnerable to East Asian dust. Desertification control in China requires increased international cooperation with Mongolia.
- (4)
- These two dust processes caused severe particulate pollution at the sand source and downstream cities. The particle pollution in 3.15 was worse than in 1.12 in northern China but less severe than in 1.12 in southern China. The rising and falling rates of particulate concentrations in downstream cities were slower in the 1.12 dust event than in the 3.15 dust event. Dust events with low dust heights and dust backflow should be given special consideration in urban dust pollution forecasting and warning. During these two dust events, most stations showed decreasing ozone pollution, but some showed elevated ozone pollution. The complex variation of ozone concentrations during dust weather warrants further investigation.
- (5)
- Overall, this study enhances our understanding of the formation and development of dust events in East Asia and explores the dust pollution of non-sand-source cities in China. Furthermore, the innovative use of the 3D-CWT model highlights the significance of dust height on downstream urban particle pollution. This distance functions as a point of reference for the early warning and regional joint prevention and control of dust pollution. Due to a lack of sand data, this paper only uses the HYSPLIT model’s air mass trajectories to simulate the dust path, without taking the sand’s surface conditions into account. Future research will combine remote sensing data with numerical models that integrate various elements, such as WRF-chem and CMAQ, to investigate the mechanisms of dust aerosols’ influence on urban air quality in greater depth.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanre, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Yu, H.; Kaufman, Y.J.; Chin, M.; Feingold, G.; Remer, L.A.; Anderson, T.L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys. 2006, 6, 613–666. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Montesinos, J.; Barbero, J.; Lopez, G.; Ballestrin, J.; Polo, J.; Marzo, A.; Batlles, F.J. The influence of Sahara dust particles in the direct normal irradiance estimation through a total sky camera. In Proceedings of the 11th ISES Eurosun 2016 Conference, Palma de Mallorca, Spain, 11–14 October 2016; pp. 1413–1421. [Google Scholar]
- Ramanathan, V.; Crutzen, P.J.; Lelieveld, J.; Mitra, A.P.; Althausen, D.; Anderson, J.; Andreae, M.O.; Cantrell, W.; Cass, G.R.; Chung, C.E.; et al. Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res. Atmos. 2001, 106, 28371–28398. [Google Scholar] [CrossRef]
- Andreae, M.O.; Rosenfeld, D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 2008, 89, 13–41. [Google Scholar] [CrossRef]
- Oh, S.H.; Park, K.; Park, M.; Song, M.Y.K.; Jang, K.S.; Schauer, J.J.; Bae, G.N.; Bae, M.S. Comparison of the sources and oxidative potential of PM2.5 during winter time in large cities in China and South Korea. Sci. Total Environ. 2023, 859, 160369. [Google Scholar] [CrossRef]
- Bin, C.; Song, Z.H.; Huang, J.P.; Zhang, P.; Hu, X.Q.; Zhang, X.Y.; Guan, X.D.; Ge, J.M.; Zhou, X.Z. Estimation of Atmospheric PM10 Concentration in China Using an Interpretable Deep Learning Model and Top-of-the-Atmosphere Reflectance Data from China’s New Generation Geostationary Meteorological Satellite, FY-4A. J. Geophys. Res. Atmos. 2022, 127, e2021JD036393. [Google Scholar] [CrossRef]
- Das, S.; Prospero, J.M.; Chellam, S. Quantifying international and interstate contributions to primary ambient PM2.5 and PM10 in a complex metropolitan atmosphere. Atmos. Environ. 2023, 292, 119415. [Google Scholar] [CrossRef]
- Panunzi, S.; Marchetti, P.; Stafoggia, M.; Badaloni, C.; Caranci, N.; de Hoogh, K.; Rossi, P.G.; Guarda, L.; Locatelli, F.; Ottone, M.; et al. Residential exposure to air pollution and adverse respiratory and allergic outcomes in children and adolescents living in a chipboard industrial area of Northern Italy. Sci. Total Environ. 2023, 864, 161070. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Wang, B.; Liu, C.; He, L.; Shan, X.B.; Zhang, K.; Luo, B. Effects of Dust Event Days on Influenza: Evidence from Arid Environments in Lanzhou. Aerosol Air Qual. Res. 2022, 22, 220282. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, L.Y.; Wang, H.L.; Wang, P.Y.; Liao, H. Dust pollution in China affected by different spatial and temporal types ofEl Nino. Atmos. Chem. Phys. 2022, 22, 14489–14502. [Google Scholar] [CrossRef]
- Yao, X.F.; Ge, B.Z.; Li, A.B.; Chen, G.J.; Fan, F.; Xu, D.H.; Wang, Y.G.; Tang, X.; Kong, L.; Wang, Z.F. Spatio-temporal variation of PM2.5 pollution in Xinjiang and its causes: The growing importance in air pollution situation in China. Front. Environ. Sci. 2023, 10, 1051610. [Google Scholar] [CrossRef]
- Patel, K.; Chaurasia, M.; Rao, K.S. Urban dust pollution tolerance indices of selected plant species for development of urban greenery in Delhi. Environ. Monit. Assess. 2023, 195, 16. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.C.; Lian, Y.Q.; Qin, X.Q. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Aili, A.; Xu, H.L.; Kasim, T.; Abulikemu, A. Origin and Transport Pathway of Dust Storm and Its Contribution to Particulate Air Pollution in Northeast Edge of Taklimakan Desert, China. Atmosphere 2021, 12, 113. [Google Scholar] [CrossRef]
- Takemi, T.; Seino, N. Dust storms and cyclone tracks over the arid regions in east Asia in spring. J. Geophys. Res. Atmos. 2005, 110, D18S11. [Google Scholar] [CrossRef] [Green Version]
- Li, J.D.; Hao, X.; Liao, H.; Yue, X.; Li, H.; Long, X.; Li, N. Predominant Type of Dust Storms That Influences Air Quality Over Northern China and Future Projections. Earths Future 2022, 10, e2022EF002649. [Google Scholar] [CrossRef]
- Zhang, T.L.; Zheng, M.; Sun, X.G.; Chen, H.H.; Wang, Y.T.; Fan, X.H.; Pan, Y.B.; Quan, J.N.; Liu, J.Y.; Wang, Y.A.; et al. Environmental impacts of three Asian dust events in the northern China and the northwestern Pacific in spring 2021. Sci. Total Environ. 2023, 859, 160230. [Google Scholar] [CrossRef]
- Yang, L.L.; Zhang, S.W.; Huang, Z.W.; Yang, Y.P.; Wang, L.N.; Han, W.Y.; Li, X.Y. Characteristics of Dust Events in China from 2015 to 2020. Atmosphere 2021, 12, 952. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, B. Aerosols over East and South Asia: Type Identification, Optical Properties, and Implications for Radiative Forcing. Remote Sens. 2022, 14, 2058. [Google Scholar] [CrossRef]
- Liu, C.T.; Xin, Y.Y.; Zhang, C.L.; Liu, J.F.; Liu, P.F.; He, X.W.; Mu, Y.J. Ambient volatile organic compounds in urban and industrial regions in Beijing: Characteristics, source apportionment, secondary transformation and health risk assessment. Sci. Total Environ. 2023, 855, 158873. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.Q.; Li, K.; Dickerson, R.R.; Pinker, R.T.; Wang, J.; Liu, X.; Sun, L.; Xue, W.H.; Cribb, M. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sens. Environ. 2022, 270, 112775. [Google Scholar] [CrossRef]
- Chen, Y.L.; Li, H.C.; Karimian, H.; Li, M.M.; Fan, Q.; Xu, Z.G. Spatio-temporal variation of ozone pollution risk and its influencing factors in China based on Geodetector and Geospatial models. Chemosphere 2022, 302, 134843. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Jiang, X.T.; Wu, C.H. Contrasting Near-Surface Ozone Pollution in Wet and Dry Year over China. Int. J. Environ. Res. Public Health 2023, 20, 998. [Google Scholar] [CrossRef]
- Zhu, X.W.; Wu, J.; Tang, G.Q.; Qiao, L.; Han, T.T.; Yin, X.M.; Liu, X.X.; Li, Z.M.; Xiong, Y.J.; He, D.; et al. Influence of circulation types on temporal and spatial variations of ozone in Beijing. J. Environ. Sci. 2023, 130, 37–51. [Google Scholar] [CrossRef]
- Zhang, X.X.; Yan, B.; Du, C.J.; Cheng, C.X.; Zhao, H. Quantifying the interactive effects of meteorological, socioeconomic, and pollutant factors on summertime ozone pollution in China during the implementation of two important policies. Atmos. Pollut. Res. 2021, 12, 101248. [Google Scholar] [CrossRef]
- Gharibzadeh, M.; Bidokhti, A.A.; Alam, K. The interaction of ozone and aerosol in a semi-arid region in the Middle East: Ozone formation and radiative forcing implications. Atmos. Environ. 2021, 245, 118015. [Google Scholar] [CrossRef]
- Meinander, O.; Dagsson-Waldhauserova, P.; Amosov, P.; Aseyeva, E.; Atkins, C.; Baklanov, A.; Baldo, C.; Barr, S.L.; Barzycka, B.; Benning, L.G.; et al. Newly identified climatically and environmentally significant high-latitude dust sources. Atmos. Chem. Phys. 2022, 22, 11889–11930. [Google Scholar] [CrossRef]
- Han, J.; Dai, H.; Gu, Z.L. Sandstorms and desertification in Mongolia, an example of future climate events: A review. Environ. Chem. Lett. 2021, 19, 4063–4073. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xing, J.; Sahu, S.K.; Liu, X.; Liu, S.; Jiang, Y.; Zhang, H.; Li, S.; Ding, D.; Chang, X.; et al. Wind-blown dust and its impacts on particulate matter pollution in Northern China: Current and future scenarios. Environ. Res. Lett. 2021, 16, 114041. [Google Scholar] [CrossRef]
- He, Y.; Yi, F.; Yin, Z.; Liu, F.; Yi, Y.; Zhou, J. Mega Asian dust event over China on 27–31 March 2021 observed with space-borne instruments and ground-based polarization lidar. Atmos. Environ. 2022, 285, 119238. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M. Development, progression, and impact on urban air quality of the dust storm in Asia in March 15–18, 2021. Urban Clim. 2022, 41, 101080. [Google Scholar] [CrossRef]
- Gui, K.; Yao, W.; Che, H.; An, L.; Zheng, Y.; Li, L.; Zhao, H.; Zhang, L.; Zhong, J.; Wang, Y.; et al. Record-breaking dust loading during two mega dust storm events over northern China in March 2021: Aerosol optical and radiative properties and meteorological drivers. Atmos. Chem. Phys. 2022, 22, 7905–7932. [Google Scholar] [CrossRef]
- Liang, P.; Chen, B.; Yang, X.; Liu, Q.; Li, A.; Mackenzie, L.; Zhang, D. Revealing the dust transport processes of the 2021 mega dust storm event in northern China. Sci. Bull. 2022, 67, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Pang, M.; Segers, A.; Han, W.; Fang, L.; Li, B.; Feng, H.; Lin, H.X.; Liao, H. Inverse modeling of the 2021 spring super dust storms in East Asia. Atmos. Chem. Phys. 2022, 22, 6393–6410. [Google Scholar] [CrossRef]
- Sun, X.G.; Fan, X.H.; Zhang, T.L.; Wang, Y.A.; Wang, Y.T.; Lyu, D.; Zheng, M. Tempo-Spatial Distributions and Transport Characteristics of Two Dust Events over Northern China in March 2021. Remote Sens. 2022, 14, 5967. [Google Scholar] [CrossRef]
- Wang, X.M.; Hua, T.; Che, H.Z. Temporal variation of dust aerosol pollution in northern China. Arab. J. Geosci. 2020, 13, 108. [Google Scholar] [CrossRef]
- Zou, X.K.K.; Zhai, P.M.M. Relationship between vegetation coverage and spring dust storms over northern China. J. Geophys. Res. Atmos. 2004, 109, 9. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.Q.; Kong, Y.F.; Zhang, H.P.; Ru, X.T.; Song, H.Q. Spatial and Temporal Variations in Spring Dust Concentrations from 2000 to 2020 in China: Simulations with WRF-Chem. Remote Sens. 2022, 14, 13. [Google Scholar] [CrossRef]
- Jiang, Q.; Gui, H.; Xu, R. Analysis of January 2020 Atmospheric Circulation and Weather. Meteorol. Mon. 2021, 47, 510–516. [Google Scholar]
- Guan, T.; Zhang, T.; Li, X. Analysis of the March 2021 Atmospheric Circulation and Weather. Meteorol. Mon. 2021, 47, 767–772. [Google Scholar]
- Garane, K.; Chan, K.L.; Koukouli, M.E.; Loyola, D.; Balis, D. TROPOMI/S5P Total Column Water Vapor validation against AERONET ground-based measurements. Atmos. Meas. Tech. 2023, 16, 57–74. [Google Scholar] [CrossRef]
- Zhang, L.J.; Ding, S.J.; Qian, W.M.; Zhao, A.M.; Zhao, S.M.; Yang, Y.; Weng, G.Q.; Tao, M.H.; Chen, H.; Zhao, S.H.; et al. The Impact of Long-Range Transport of Biomass Burning Emissions in Southeast Asia on Southern China. Atmosphere 2022, 13, 1029. [Google Scholar] [CrossRef]
- Torres, O.; Jethva, H.; Ahn, C.; Jaross, G.; Loyola, D.G. TROPOMI aerosol products: Evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018-2020. Atmos. Meas. Tech. 2020, 13, 6789–6806. [Google Scholar] [CrossRef]
- Chen, B.; Huang, J.; Minnis, P.; Hu, Y.; Yi, Y.; Liu, Z.; Zhang, D.; Wang, X. Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements. Atmos. Chem. Phys. 2010, 10, 4241–4251. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Song, Z.H.; Pan, F.; Huang, Y. Obtaining vertical distribution of PM2.5 from CALIOP data and machine learning algorithms. Sci. Total Environ. 2022, 805, 150338. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Ge, C.D.; Liu, J.; Cheng, X.G.; Fang, K.Y.; Chen, Z.X.; Chen, Z.B.; Hu, J.; Jiang, D.S.; Shen, L.J.; Yang, M.M. Impact of regional transport on high ozone episodes in southeast coastal regions of China. Atmos. Pollut. Res. 2022, 13, 101497. [Google Scholar] [CrossRef]
- Dong, L.; Chen, B.; Huang, Y.; Song, Z.H.; Yang, T.T. Analysis on the Characteristics of Air Pollution in China during the COVID-19 Outbreak. Atmosphere 2021, 12, 205. [Google Scholar] [CrossRef]
- Zhan, Y.Z.H.; Xie, M.; Gao, D.; Wang, T.J.; Zhang, M.; An, F.X. Characterization and source analysis of water-soluble inorganic ionic species in PM2.5 during a wintertime particle pollution episode in Nanjing, China. Atmos. Res. 2021, 262, 105769. [Google Scholar] [CrossRef]
- Bai, D.P.; Wang, H.L.; Cheng, M.T.; Gao, W.K.; Yang, Y.; Huang, W.; Ma, K.J.; Zhang, Y.; Zhang, R.J.; Zou, J.N.; et al. Source apportionment of PM2.5 and its optical properties during a regional haze episode over north China plain. Atmos. Pollut. Res. 2020, 12, 89–99. [Google Scholar] [CrossRef]
- Kong, L.W.; Tan, Q.W.; Feng, M.; Qu, Y.; An, J.L.; Liu, X.G.; Cheng, N.L.; Deng, Y.J.; Zhai, R.X.; Wang, Z. Investigating the characteristics and source analyses of PM2.5 seasonal variations in Chengdu, Southwest China. Chemosphere 2020, 243, 125267. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.T.; Vuong, Q.T.; Lee, S.J.; Xiao, H.; Choi, S.D. Identification of source areas of polycyclic aromatic hydrocarbons in Ulsan, South Korea, using hybrid receptor models and the conditional bivariate probability function. Environ. Sci. Process. Impacts 2022, 24, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, K.; Mihalopoulos, N.; Leeson, S.R.; Twigg, M.M. Sources of PM2.5-bound water soluble ions at EMEP’s Auchencorth Moss (UK) supersite revealed by 3D-Concentration Weighted Trajectory (CWT) model. Chemosphere 2021, 274, 129979. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, K.; Pikridas, M.; Oikonomou, K.; Sciare, J.; Savvides, C.; Vassiliadou, E.; Mihalopoulos, N. A 3-Dimensional analysis of long-range transported particulate matter to the Eastern Mediterranean: Implication for the chemical components of PM1 and PM10. Atmos. Pollut. Res. 2022, 13, 101485. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Wang, Y.Q.; Liang, C.H.; Wang, J.J.; Fang, J.; Zhou, M.X. Study of Mixed Pollution of Haze and Dust in Jinan Based on LiDAR. Photonics 2022, 9, 144. [Google Scholar] [CrossRef]
- Tsai, F.J.; Yao, W.C.; Lin, M.L. Analysis of Meteorological Conditions on Riverbed Dust Aerosol in Taiwan. Atmosphere 2022, 13, 106. [Google Scholar] [CrossRef]
- Tong, P.F.; Chen, S.X.; Tang, C.Y. Detecting and Evaluating Dust-Events in North China with Ground Air Quality Data. Earth Space Sci. 2022, 9, e2021EA001849. [Google Scholar] [CrossRef]
- Wang, N.; Chen, J.; Zhang, Y.Y.; Xu, Y.M.; Cul, J.W. Multi-source remote sensing analysis of the first sand and dust weather in Northern China in 2021. China Environ. Sci. 2022, 42, 2002–2014. [Google Scholar] [CrossRef]
- Bueh, C.; Zhuge, A.; Xie, Z.; Yong, M.; Purevjav, G. The development of a powerful Mongolian cyclone on 14-15 March 2021: Eddy energy analysis. Atmos. Ocean. Sci. Lett. 2022, 15, 44–51. [Google Scholar] [CrossRef]
- Lyu, Y.; Ju, Q.R.; Lv, F.M.; Feng, J.L.; Pang, X.B.; Li, X. Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021. Environ. Pollut. 2022, 306, 119420. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhu, B.; Xiao, H.; Kang, H.; Hou, X.; Yin, Y.; Zhang, L.; Miao, Q. Diurnal variations and source apportionment of ozone at the summit of Mount Huang, a rural site in Eastern China. Environ. Pollut. 2017, 222, 513–522. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Q.Q.; Wei, X.Y.; Feng, X.Y.; Ma, P.; Hu, W.D.; Xin, J.Y.; Ni, C.J.; Wang, S.G.; Zheng, C.J. Temperature modulation of adverse consequences of ozone exposure on cardiovascular mortality: A study of multiple cities in China. Atmos. Environ. 2022, 288, 119272. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y.N.; Pei, C.L.; Chen, T.S.; Mu, J.S.; Liu, Y.H.; Wang, Y.J.; Wang, W.X.; Xue, L.K. Worsening ozone air pollution with reduced NOx and VOCs in the Pearl River Delta region in autumn 2019: Implications for national control policy in China. J. Environ. Manag. 2022, 324, 116327. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, T.; Vinoj, V.; Midya, S.K.; Adhikary, B. Aerosol radiative impact on surface ozone during a heavy dust and biomass burning event over South Asia. Atmos. Environ. 2020, 223, 117201. [Google Scholar] [CrossRef]
- Wang, Z.L.; Huang, X.; Wang, N.; Xu, J.W.; Ding, A.J. Aerosol-Radiation Interactions of Dust Storm Deteriorate Particle and Ozone Pollution in East China. J. Geophys. Res. Atmos. 2020, 125, e2020JD033601. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Lou, S.; Xue, L.; Lu, J.; Wang, H.; Wang, J.; Ding, A.; Huang, X. Strong ozone intrusions associated with super dust storms in East Asia. Atmos. Environ. 2022, 290, 119355. [Google Scholar] [CrossRef]
Stations | High PM10 Day | PM10 Daily Average (μg/m3) | Daily Change Rates of the Ozone Pollution Level |
---|---|---|---|
Beijing | 1.12 | 155 | −60% |
1.13 | 163 | 156% | |
3.15 | 1524 | 86% | |
3.17 | 294 | −51% | |
Zhejiang | 1.14 | 153 | −14% |
1.15 | 197 | 27% | |
3.14 | 116 | 20% | |
Hunan | 1.15 | 156 | −17% |
1.16 | 206 | −47% | |
3.16 | 130 | 61% | |
Henan | 1.15 | 302 | −59% |
1.16 | 198 | 41% | |
3.15 | 368 | −2% | |
3.16 | 517 | −15% | |
Shaanxi | 1.13 | 216 | −23% |
1.14 | 353 | 27% | |
3.15 | 2511 | −7% | |
3.16 | 1955 | −51% | |
Jinlin | 1.15 | 103 | 6% |
3.15 | 339 | −23% |
Stations | High PM10 Day | PM10 Daily Average (μg/m3) | Daily Change Rates of the Ozone Pollution Level |
---|---|---|---|
Xinjiang | 1.16 | 315 | −1% |
1.17 | 232 | −20% | |
3.16 | 923 | −10% | |
3.17 | 710 | −7% | |
Gansu | 1.13 | 96 | −3% |
1.15 | 32 | −7% | |
3.15 | 2484 | −21% | |
3.16 | 2731 | −9% | |
Xinlingol | 1.12 | 80 | −7% |
3.14 | 878 | 46% | |
Baotou | 1.13 | 1205 | −25% |
1.14 | 774 | 64% | |
3.14 | 744 | −7% | |
3.15 | 664 | −22% | |
Alxa | 1.12 | 1406 | 2% |
1.13 | 326 | 0% | |
3.15 | 3191 | −28% | |
3.17 | 1251 | −37% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Q.; Zheng, X. Distribution, Transport, and Impact on Air Quality of Two Typical Dust Events in China in 2021. Atmosphere 2023, 14, 432. https://doi.org/10.3390/atmos14030432
Ye Q, Zheng X. Distribution, Transport, and Impact on Air Quality of Two Typical Dust Events in China in 2021. Atmosphere. 2023; 14(3):432. https://doi.org/10.3390/atmos14030432
Chicago/Turabian StyleYe, Qia, and Xiaoshen Zheng. 2023. "Distribution, Transport, and Impact on Air Quality of Two Typical Dust Events in China in 2021" Atmosphere 14, no. 3: 432. https://doi.org/10.3390/atmos14030432
APA StyleYe, Q., & Zheng, X. (2023). Distribution, Transport, and Impact on Air Quality of Two Typical Dust Events in China in 2021. Atmosphere, 14(3), 432. https://doi.org/10.3390/atmos14030432