Deconstructing Global Observed and Reanalysis Total Cloud Cover Fields Based on Pacific Climate Modes
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Initial Pre-Filter of the Data
2.3. Multivariate Statistical Methods
3. Results
3.1. Dominant Modes of Global Total Cloud Cover Variability
3.2. Observed Coupled SST-TCC Patterns Associated to Interannual Pacific Climate Variability
3.3. Coupled SST- Reanalysis TCC Patterns Associated to Interannual Pacific Climate Variability
3.4. Coupled SST-TCC Patterns Associated to Decadal Pacific Variability
3.5. Associated Physical Processes
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, C.; Zelinka, M.D.; Klein, S.A. Impact of Decadal Cloud Variations on the Earth’s Energy Budget. Nat. Geosci. 2016, 9, 871–874. [Google Scholar] [CrossRef]
- Cess, R.D.; Potter, G.L.; Blanchet, J.P.; Boer, G.J.; Genio, A.D.D.; Déqué, M.; Dymnikov, V.; Galin, V.; Gates, W.L.; Ghan, S.J.; et al. Intercomparison and Interpretation of Climate Feedback Processes in 19 Atmospheric General Circulation Models. J. Geophys. Res. 1990, 95, 16601–16615. [Google Scholar] [CrossRef]
- Dufresne, J.L.; Bony, S. An Assessment of the Primary Sources of Spread of Global Warming Estimates from Coupled Atmosphere-Ocean Models. J. Clim. 2008, 21, 5135–5144. [Google Scholar] [CrossRef] [Green Version]
- Marvel, K.; Zelinka, M.; Klein, S.A.; Bonfils, C.; Caldwell, P.; Doutriaux, C.; Santer, B.D.; Taylor, K.E. External Influences on Modeled and Observed Cloud Trends. J. Clim. 2015, 28, 4820–4840. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Grise, K.M.; Klein, S.A.; Zhoua, C.; DeAngelisb, A.M.; Christensen, M.W. Drivers of the Low-Cloud Response to Poleward Jet Shifts in the North Pacific in Observations and Models. J. Clim. 2018, 31, 7925–7947. [Google Scholar] [CrossRef]
- Norris, J.R. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing. J. Geophys. Res. D Atmos. 2005, 110, D08206. [Google Scholar] [CrossRef]
- Evan, A.T.; Heidinger, A.K.; Vimont, D.J. Arguments against a Physical Long-Term Trend in Global ISCCP Cloud Amounts. Geophys. Res. Lett. 2007, 34, L04701. [Google Scholar] [CrossRef]
- Norris, J.R.; Slingo, A. Trends in Observed Cloudiness and Earth’s Radiation Budget: What Do We Not Know and What Do We Need to Know? In Clouds in the Perturbed Climate System; Heintzenberg, J., Charlson, R.J., Eds.; Strüngmann Forum Reports; MIT Press: Cambridge, MA, USA, 2009; pp. 17–36. [Google Scholar]
- Pallé, E. Possible Satellite Perspective Effects on the Reported Correlations between Solar Activity and Clouds. Geophys. Res. Lett. 2005, 32, L03802. [Google Scholar] [CrossRef] [Green Version]
- Jacobowitz, H.; Stowe, L.L.; Ohring, G.; Heidinger, A.; Knapp, K.; Nalli, N.R. The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) Climate Dataset: A Resource for Climate Research. Bull. Am. Meteorol. Soc. 2003, 84, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Norris, J.R.; Evan, A.T. Empirical Removal of Artifacts from the ISCCP and PATMOS-x Satellite Cloud Records. J. Atmos. Ocean. Technol. 2015, 32, 691–702. [Google Scholar] [CrossRef]
- Bony, S.; Stevens, B.; Frierson, D.M.W.; Jakob, C.; Kageyama, M.; Pincus, R.; Shepherd, T.G.; Sherwood, S.C.; Siebesma, A.P.; Sobel, A.H.; et al. Clouds, Circulation and Climate Sensitivity. Nat. Geosci. 2015, 8, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Andrews, T.; Webb, M.J. The Dependence of Global Cloud and Lapse Rate Feedbacks on the Spatial Structure of Tropical Pacific Warming. J. Clim. 2018, 31, 641–654. [Google Scholar] [CrossRef]
- Silvers, L.G.; Paynter, D.; Zhao, M. The Diversity of Cloud Responses to Twentieth Century Sea Surface Temperatures. Geophys. Res. Lett. 2018, 45, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Myers, T.A.; Norris, J.R. Reducing the Uncertainty in Subtropical Cloud Feedback. Geophys. Res. Lett. 2016, 43, 2144–2148. [Google Scholar] [CrossRef]
- Philander, S.G. El Nino, La Nina, and the Southern Oscillation. Int. Geophys. Ser. 1989, 46, 281–289. [Google Scholar]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [Green Version]
- Timmermann, A.; An, S.-I.; Kug, J.-S.; Jin, F.-F.; Cai, W.; Capotondi, A.; Cobb, K.M.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño–Southern Oscillation Complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Chiodi, A.M.; Harrison, D.E. Global Seasonal Precipitation Anomalies Robustly Associated with El Niño and La Niña Events—An OLR Perspective. J. Clim. 2015, 28, 6133–6159. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Ng, B.; Wang, G.; Santoso, A.; Wu, L.; Yang, K. Increased ENSO Sea Surface Temperature Variability under Four IPCC Emission Scenarios. Nat. Clim. Change 2022, 12, 228–231. [Google Scholar] [CrossRef]
- Singh, J.; Ashfaq, M.; Skinner, C.B.; Anderson, W.B.; Mishra, V.; Singh, D. Enhanced Risk of Concurrent Regional Droughts with Increased ENSO Variability and Warming. Nat. Clim. Change 2022, 12, 163–170. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Carpenter, T.H. Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Nino (Pacific). Mon. Weather Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef]
- Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kwon, M.H.; Kirtman, B.P.; Jin, F.F. El Nĩo in a Changing Climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Ashok, K.; Yamagata, T. The El Niño with a Difference. Nature 2009, 461, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Kug, J.S.; Jin, F.F.; An, S. Il Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. J. Clim. 2009, 22, 1499–1515. [Google Scholar] [CrossRef]
- Larkin, N.K.; Harrison, D.E. Global Seasonal Temperature and Precipitation Anomalies during El Niño Autumn and Winter. Geophys. Res. Lett. 2005, 32, L16705. [Google Scholar] [CrossRef]
- Yu, J.Y.; Kao, H.Y.; Lee, T. Subtropics-Related Interannual Sea Surface Temperature Variability in the Central Equatorial Pacific. J. Clim. 2010, 23, 2869–2884. [Google Scholar] [CrossRef]
- Freund, M.B.; Henley, B.J.; Karoly, D.J.; McGregor, H.V.; Abram, N.J.; Dommenget, D. Higher Frequency of Central Pacific El Niño Events in Recent Decades Relative to Past Centuries. Nat. Geosci. 2019, 12, 450–455. [Google Scholar] [CrossRef]
- Klein, S.A.; Soden, B.J.; Lau, N.C. Remote Sea Surface Temperature Variations during ENSO: Evidence for a Tropical Atmospheric Bridge. J. Clim. 1999, 12, 917–932. [Google Scholar] [CrossRef]
- Marsh, N.; Svensmark, H. Galactic Cosmic Ray and El Niño-Southern Oscillation Trends in International Satellite Cloud Climatology Project D2 Low-Cloud Properties. J. Geophys. Res. Atmos. 2003, 108, 4194–4195. [Google Scholar] [CrossRef]
- Clement, A.C.; Burgman, R.; Norris, J.R. Observational and Model Evidence for Positive Low-Level Cloud Feedback. Science 2009, 32, 460–464. [Google Scholar] [CrossRef] [Green Version]
- Laken, B.; Pallé, E.; Miyahara, H. A Decade of the Moderate Resolution Imaging Spectroradiometer: Is a Solar-Cloud Link Detectable? J. Clim. 2012, 25, 4430–4440. [Google Scholar] [CrossRef]
- Radel, G.; Mauritsen, T.; Stevens, B.; Dommenget, D.; Matei, D.; Bellomo, K.; Clement, A. Amplification of El Nino by Cloud Longwave Coupling to Atmospheric Circulation. Nat. Geosci. 2016, 9, 106–110. [Google Scholar] [CrossRef]
- Wang, H.; Su, W. The ENSO Effects on Tropical Clouds and Top-of-Atmosphere Cloud Radiative Effects in CMIP5 Models. J. Geophys. Res. 2015, 120, 4443–4465. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Hwang, Y.T.; Zelinka, M.D.; Zhou, C. Distinct Patterns of Cloud Changes Associated with Decadal Variability and Their Contribution to Observed Cloud Cover Trends. J. Clim. 2019, 32, 7281–7301. [Google Scholar] [CrossRef]
- Li, K.F.; Su, H.; Mak, S.N.; Chang, T.M.; Jiang, J.H.; Norris, J.R.; Yung, Y.L. An Analysis of High Cloud Variability: Imprints from the El Niño–Southern Oscillation. Clim. Dyn. 2017, 48, 447–457. [Google Scholar] [CrossRef]
- Preethi, B.; Sabin, T.P.; Adedoyin, J.A.; Ashok, K. Impacts of the ENSO Modoki and Other Tropical Indo-Pacific Climate-Drivers on African Rainfall. Sci. Rep. 2015, 5, 16653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedermann, M.; Siegmund, J.F.; Donges, J.F.; Donner, R.V. Differential Imprints of Distinct ENSO Flavors in Global Patterns of Very Low and High Seasonal Precipitation. Front. Clim. 2021, 3, 618548. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. ISCCP Cloud Data Products. Bull.—Am. Meteorol. Soc. 1991, 72, 2–20. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. Advances in Understanding Clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2288. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Foster, M.J.; Walther, A.; Zhao, X. The Pathfinder Atmospheres-Extended Avhrr Climate Dataset. Bull. Am. Meteorol. Soc. 2014, 95, 909–922. [Google Scholar] [CrossRef]
- Voiculescu, M.; Usoskin, I.; Mursula, K. Effect of ENSO and Volcanic Events on the Sun-Cloud Link. Adv. Space Res. 2007, 40, 1140–1145. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Hartmann, D.L. The Observed Sensitivity of High Clouds to Mean Surface Temperature Anomalies in the Tropics. J. Geophys. Res. Atmos. 2011, 116, D23. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.A.; Zhang, Y.; Zelinka, M.D.; Pincus, R.; Boyle, J.; Gleckler, P.J. Are Climate Model Simulations of Clouds Improving? An Evaluation Using the ISCCP Simulator. J. Geophys. Res. Atmos. 2013, 118, 1329–1342. [Google Scholar] [CrossRef]
- Dima, M.; Voiculescu, M. Global Patterns of Solar Influence on High Cloud Cover. Clim. Dyn. 2016, 47, 667–678. [Google Scholar] [CrossRef]
- Vaideanu, P.; Dima, M.; Voiculescu, M. Atlantic Multidecadal Oscillation Footprint on Global High Cloud Cover. Theor. Appl. Climatol. 2018, 134, 1245–1256. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century. J. Geophys. Res. D Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and Its Possible Teleconnection. J. Geophys. Res. Ocean. 2007, 112, C11007. [Google Scholar] [CrossRef]
- Jeong, H.I.; Ahn, J.B. A New Method to Classify ENSO Events into Eastern and Central Pacific Types. Int. J. Climatol. 2017, 37, 2193–2199. [Google Scholar] [CrossRef]
- Ren, H.L.; Zuo, J.; Deng, Y. Statistical Predictability of Niño Indices for Two Types of ENSO. Clim. Dyn. 2019, 52, 5361–5382. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Stepaniak, D.P. Indices of El Niño Evolution. J. Clim. 2001, 14, 1697–1701. [Google Scholar] [CrossRef]
- Usoskin, I.G.; Voiculescu, M.; Kovaltsov, G.A.; Mursula, K. Correlation between Clouds at Different Altitudes and Solar Activity: Fact or Artifact? J. Atmos. Sol. Terr. Phys. 2006, 68, 2164–2172. [Google Scholar] [CrossRef]
- Laken, B.A.; Čalogović, J. Solar Irradiance, Cosmic Rays and Cloudiness over Daily Timescales. Geophys. Res. Lett. 2011, 38, L24811. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction. In Technical Report Statistical Forecast Project Report 1 Department of Meteorology MIT 49; Massachusetts Institute of Technology, Department of Meteorology: Cambridge, UK, 1956; Volume 1, p. 52. [Google Scholar]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling Errors in the Estimation of Empirical Orthogonal Functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Zorita, E.; Kharin, V.; von Storch, H. The Atmospheric Circulation and Sea Surface Temperature in the North Atlantic Area in Winter: Their Interaction and Relevance for Iberian Precipitation. J. Clim. 1992, 5, 1097–1108. [Google Scholar] [CrossRef]
- von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Yu, J.Y.; Kim, S.T. Identifying the Types of Major El Niño Events since 1870. Int. J. Climatol. 2013, 33, 2105–2112. [Google Scholar] [CrossRef] [Green Version]
- Kao, H.Y.; Yu, J.Y. Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Caron, J.M. Estimates of Meridional Atmosphere and Ocean Heat Transports. J. Clim. 2001, 14, 3433–3443. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-Day South American Climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- King, A.D.; Donat, M.G.; Alexander, L.V.; Karoly, D.J. The ENSO-Australian Rainfall Teleconnection in Reanalysis and CMIP5. Clim. Dyn. 2015, 44, 2623–2635. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1080. [Google Scholar] [CrossRef]
- Deser, C.; Alexander, M.A.; Xie, S.-P.; Phillips, A.S. Sea Surface Temperature Variability: Patterns and Mechanisms. Ann. Rev. Mar. Sci. 2010, 2, 115–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- di Lorenzo, E.; Schneider, N.; Cobb, K.M.; Franks, P.J.S.; Chhak, K.; Miller, A.J.; McWilliams, J.C.; Bograd, S.J.; Arango, H.; Curchitser, E.; et al. North Pacific Gyre Oscillation Links Ocean Climate and Ecosystem Change. Geophys. Res. Lett. 2008, 35, L08607. [Google Scholar] [CrossRef] [Green Version]
- di Lorenzo, E.; Cobb, K.M.; Furtado, J.C.; Schneider, N.; Anderson, B.T.; Bracco, A.; Alexander, M.A.; Vimont, D.J. Central Pacific El Niño and Decadal Climate Change in the North Pacific Ocean. Nat. Geosci. 2010, 3, 762–765. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric teleconnections from the equatorial pacific 1. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Lei, R.; Tian-Kunze, X.; Leppäranta, M.; Wang, J.; Kaleschke, L.; Zhang, Z. Changes in Summer Sea Ice, Albedo, and Portioning of Surface Solar Radiation in the Pacific Sector of Arctic Ocean during 1982–2009. J. Geophys. Res. Ocean. 2016, 121, 5470–5486. [Google Scholar] [CrossRef] [Green Version]
- Back, L.E.; Bretherton, C.S. A Simple Model of Climatological Rainfall and Vertical Motion Patterns over the Tropical Oceans. J. Clim. 2009, 22, 6477–6497. [Google Scholar] [CrossRef]
- Arking, A.; Ziskin, D. Relationship between Clouds and Sea Surface Temperatures in the Western Tropical Pacific. J. Clim. 1994, 7, 988–1000. [Google Scholar] [CrossRef]
- Norris, J.R. What Can Cloud Observations Tell Us about Climate Variability? Space Sci. Rev. 2000, 94, 375–380. [Google Scholar] [CrossRef]
- Probst, P.; Rizzi, R.; Tosi, E.; Lucarini, V.; Maestri, T. Total Cloud Cover from Satellite Observations and Climate Models. Atmos. Res. 2012, 107, 161–170. [Google Scholar] [CrossRef]
- Free, M.; Sun, B. Time-Varying Biases in U.S. Total Cloud Cover Data. J. Atmos. Ocean. Technol. 2013, 30, 2838–2849. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Larson, K. An Important Constraint on Tropical Cloud—Climate Feedback. Geophys. Res. Lett. 2002, 29, 12-1–12-4. [Google Scholar] [CrossRef] [Green Version]
- Sfîcă, L.; Beck, C.; Nita, A.I.; Voiculescu, M.; Birsan, M.V.; Philipp, A. Cloud Cover Changes Driven by Atmospheric Circulation in Europe during the Last Decades. Int. J. Climatol. 2021, 41, E2211–E2230. [Google Scholar] [CrossRef]
- Norris, J.R.; Allen, R.J.; Evan, A.T.; Zelinka, M.D.; O’Dell, C.W.; Klein, S.A. Evidence for Climate Change in the Satellite Cloud Record. Nature 2016, 536, 72–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiodi, A.M.; Harrison, D.E. El Niño impacts on seasonal US atmospheric circulation, temperature, and precipitation anomalies: The OLR-event perspective. J. Clim. 2013, 26, 822–837. [Google Scholar] [CrossRef] [Green Version]
- Sulca, J.; Takahashi, K.; Espinoza, J.C.; Vuille, M.; Lavado-Casimiro, W. Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int. J. Climatol. 2018, 38, 420–435. [Google Scholar] [CrossRef]
CCA | Explained Variance (r2) SST | Explained Variance (r2) TCC | Correlation Coefficient PCs | Footprint | Correlation with the Associated Index | Projection on EOF1 1 = Identical Projection | Projection on EOF2/3 1 = Identical Projection | Projection on Decadal Variability Max Value = 1 |
---|---|---|---|---|---|---|---|---|
ISPCC 3rd pair | 20% | 22% | 0.98 | EP ENSO | 0.84 | 0.94 | 0.03 | 0.35 |
ISPCC 4th pair | 7% | 7% | 0.97 | CP ENSO | 0.67 | 0.04 | 0.89 | 0.26 |
PATMOS-x 3rd pair | 16% | 17% | 0.99 | EP ENSO | 0.8 | 0.79 | 0.02 | 0.29 |
PATMOS-x 4th pair | 9% | 8% | 0.98 | CP ENSO | 0.73 | 0.01 | 0.71 | 0.21 |
ERA5 3rd pair | 16% | 13% | 0.98 | EP ENSO | 0.91 | 0.95 | 0.02 | 0.25 |
ERA5 5th pair | 7% | 7% | 0.97 | CP ENSO | 0.72 | 0.06 | 0.81 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaideanu, P.; Ionita, M.; Voiculescu, M.; Rimbu, N. Deconstructing Global Observed and Reanalysis Total Cloud Cover Fields Based on Pacific Climate Modes. Atmosphere 2023, 14, 456. https://doi.org/10.3390/atmos14030456
Vaideanu P, Ionita M, Voiculescu M, Rimbu N. Deconstructing Global Observed and Reanalysis Total Cloud Cover Fields Based on Pacific Climate Modes. Atmosphere. 2023; 14(3):456. https://doi.org/10.3390/atmos14030456
Chicago/Turabian StyleVaideanu, Petru, Monica Ionita, Mirela Voiculescu, and Norel Rimbu. 2023. "Deconstructing Global Observed and Reanalysis Total Cloud Cover Fields Based on Pacific Climate Modes" Atmosphere 14, no. 3: 456. https://doi.org/10.3390/atmos14030456
APA StyleVaideanu, P., Ionita, M., Voiculescu, M., & Rimbu, N. (2023). Deconstructing Global Observed and Reanalysis Total Cloud Cover Fields Based on Pacific Climate Modes. Atmosphere, 14(3), 456. https://doi.org/10.3390/atmos14030456