Assessment of Land Surface Schemes from the WRF-Chem for Atmospheric Modeling in the Andean Region of Ecuador
Abstract
:1. Introduction
- What land surface scheme from WRF-Chem V3.2 provides the best performance for modeling the meteorological variables and air quality in Cuenca?
- Is there a benefit when considering the influence of the urban area through the urban canopy option?
- What are the recommendation for a land surface and urban canopy model to assess the quality of the in-progress emission inventory of Cuenca?
2. Methods
2.1. The Air Quality Network
2.2. Emission Inventory of 2014
2.3. Modeling Approach
2.4. Modeling Performance
3. Results
3.1. Meteorology
3.2. Air Quality
4. Discussion and Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warner, T.T. Numerical Weather and Climate Prediction; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Sun, X.; Holmes, H.; Osibanjo, O.; Sun, Y.; Ivey, C. Evaluation of Surface Fluxes in the WRF Model: Case Study for Farmland in Rolling Terrain. Atmosphere 2017, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Somos-Valenzuela, M.; Manquehual-Cheuque, F. Evaluating Multiple WRF Configurations and Forcing over the Northern Patagonian Icecap(NPI) and Baker River Basin. Atmosphere 2020, 11, 815. [Google Scholar] [CrossRef]
- Rizza, U.; Miglietta, M.M.; Mangia, C.; Ielpo, P.; Morichetti, M.; Iachini, C.; Virgili, S.; Passerini, G. Sensitivity of WRF-Chem Model to Land Surface Schemes: Assessment in a Severe Dust Outbreak Episode in the Central Mediterranean(Apulia Region). Atmos. Res. 2018, 201, 168–180. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Y.; Menenti, M.; Zhang, X.; Ma, W. Evaluation of WRF Modeling in Relation to Different Land Surface Schemes and Initial and Boundary Conditions: A Snow Event Simulation Over the Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 209–226. [Google Scholar] [CrossRef] [Green Version]
- Stensrud, D. Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Fisher, R.A.; Koven, C.D. Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems. J. Adv. Model. Earth Syst. 2020, 12, e2018MS001453. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.-M.; Wang, N.; Wang, Y.; Zheng, Y.; Zhou, Z.; Wang, G.; Chen, C.; Liu, H. WRF-Simulated Sensitivity to Land Surface Schemes in Short and Medium Ranges for a High-Temperature Event in East China: A Comparative Study: WRF Sensitivity to Land Surface Schemes. J. Adv. Model. Earth Syst. 2015, 7, 1305–1325. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. 2008. Available online: https://opensky.ucar.edu/islandora/object/technotes:500 (accessed on 12 February 2023).
- Dudhia, J. A multi-layer soil temperature model for MM5. Workshop Boulder. In Proceedings of the Sixth Annual PSU/NCAR Mesoscale Model Users’ Workshop, Bouilder, CO, USA, 22–24 July 1996; pp. 49–50. [Google Scholar]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface—Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation. Mon. Weather Rev. 2001, 129, 587–604. [Google Scholar] [CrossRef]
- Smirnova, T.G.; Brown, J.M.; Benjamin, S.G. Performance of Different Soil Model Configurations in Simulating Ground Surface Temperature and Surface Fluxes. Mon. Weather Rev. 1997, 125, 1870–1884. [Google Scholar] [CrossRef]
- Smirnova, T.G.; Brown, J.M.; Benjamin, S.G.; Kim, D. Parameterization of Cold-Season Processes in the MAPS Land-Surface Scheme. J. Geophys. Res. Atmos. 2000, 105, 4077–4086. [Google Scholar] [CrossRef]
- Pleim, J.E.; Xiu, A. Development and Testing of a Surface Flux and Planetary Boundary Layer Model for Application in Mesoscale Models. J. Appl. Meteorol. 1995, 34, 16–32. [Google Scholar] [CrossRef] [Green Version]
- Xiu, A.; Pleim, J.E. Development of a Land Surface Model. Part I: Application in a Mesoscale Meteorological Model. J. Appl. Meteorol. 2001, 40, 192–209. [Google Scholar] [CrossRef]
- Espinoza Claudia, C. Informe de Calidad Del Aire Cuenca 2021; EMOV EP: Cuenca, Ecuador, 2022; Available online: https://www.researchgate.net/publication/362194795_Informe_de_Calidad_del_Aire_Cuenca_2021 (accessed on 12 February 2023).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter(PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021.
- World Health Organization (Ed.) Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Copenhagen, Denmark, 2006.
- Parra, R.; Cadena, E.; Flores, C. Maximum UV Index Records(2010–2014) in Quito(Ecuador) and Its Trend Inferred from Remote Sensing Data (1979–2018). Atmosphere 2019, 10, 787. [Google Scholar] [CrossRef] [Green Version]
- Parra, R. Performance Studies of Planetary Boundary Layer Schemes in WRF-Chem for the Andean Region of Southern Ecuador. Atmos. Pollut. Res. 2018, 9, 411–428. [Google Scholar] [CrossRef]
- Parra, R. Effect of Global Atmospheric Datasets in Modeling Meteorology and Air Quality in the Andean Region of Ecuador. Aerosol Air Qual. Res. 2022, 22, 210292. [Google Scholar] [CrossRef]
- Parra, R. Effects of Aerosols Feedbacks in Modeling Meteorology and Air Quality in the Andean Region of Southern Ecuador; WIT Press: Santiago de Compostela, Spain, 2021; pp. 39–50. [Google Scholar] [CrossRef]
- Parra, R.; Espinoza, C. Insights for Air Quality Management from Modeling and Record Studies in Cuenca, Ecuador. Atmosphere 2020, 11, 998. [Google Scholar] [CrossRef]
- Parra, R.; Saud, C.; Espinoza, C. Simulating PM2.5 Concentrations during New Year in Cuenca, Ecuador: Effects of Advancing the Time of Burning Activities. Toxics 2022, 10, 264. [Google Scholar] [CrossRef]
- EMOV-EP. Inventario de Emisiones Atmosféricas Del Cantón Cuenca 2014. 2016. [CrossRef]
- WRF Model Users Site. Available online: https://www2.mmm.ucar.edu/wrf/users/ (accessed on 30 December 2022).
- CISL RDA: NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999. Available online: https://rda.ucar.edu/datasets/ds083.2/ (accessed on 30 December 2022).
- Zaveri, R.A.; Peters, L.K. A New Lumped Structure Photochemical Mechanism for Large-Scale Applications. J. Geophys. Res. Atmospheres 1999, 104, 30387–30415. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Easter, R.C.; Fast, J.D.; Peters, L.K. Model for Simulating Aerosol Interactions and Chemistry(MOSAIC). J. Geophys. Res. 2008, 113, D13204. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Dudhia, J.; Chen, S.-H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.-D.; Suarez, M.J. A Solar Radiation Parameterization for Atmospheric Studies; NASA/TM-1999-104606/VOL15; NASA: Washington, DC, USA, 1999. Available online: https://ntrs.nasa.gov/citations/19990060930 (accessed on 30 December 2022).
- Paulson, C.A. The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer. J. Appl. Meteorol. 1970, 9, 857–861. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models. Bound. Layer Meteorol. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Kusaka, H.; Kimura, F. Coupling a Single-Layer Urban Canopy Model with a Simple Atmospheric Model: Impact on Urban Heat Island Simulation for an Idealized Case. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Tewari, M.; Kusaka, H.; Warner, T. Current Status of Urban Modeling in the Community Weather Research and Forecast (WRF) Model (2006—Annual2006_6urban). Available online: https://ams.confex.com/ams/Annual2006/techprogram/paper_98678.htm (accessed on 30 December 2022).
- The Application of Models under the European Union’s Air Quality Directive: A Technical Reference Guide—European Environment Agency. Available online: https://www.eea.europa.eu/publications/fairmode (accessed on 30 December 2022).
- Simon, H.; Baker, K.R.; Phillips, S. Compilation and Interpretation of Photochemical Model Performance Statistics Published between 2006 and 2012. Atmos. Environ. 2012, 61, 124–139. [Google Scholar] [CrossRef]
- World Health Organization, Regional Office for Europe. Air Quality Guidelines for Europe; World Health Organization, Regional Office for Europe: Geneva, Switzerland, 2000.
- Cazorla, M.; Juncosa, J. Planetary Boundary Layer Evolution over an Equatorial Andean Valley: A Simplified Model Based on Balloon-Borne and Surface Measurements. Atmos. Sci. Lett. 2018, 19, e829. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, L.E.; Campozano, L.V.; Guevara, D.C.; Parra, R.; Tonato, D.; Suntaxi, A.; Maisincho, L.; Páez, C.; Villacís, M.; Córdova, J.; et al. Comparison of Radiosonde Measurements of Meteorological Variables with Drone, Satellite Products, and WRF Simulations in the Tropical Andes: The Case of Quito, Ecuador. Atmosphere 2023, 14, 264. [Google Scholar] [CrossRef]
- ERA5 Hourly Data on Pressure Levels from 1959 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form (accessed on 12 February 2023).
- Cazorla, M.; Parra, R.; Herrera, E.; da Silva, F.R. Characterizing Ozone throughout the Atmospheric Column over the Tropical Andes from in Situ and Remote Sensing Observations. Elem. Sci. Anthr. 2021, 9, 00019. [Google Scholar] [CrossRef]
- Dias-Júnior, C.Q.; Carneiro, R.G.; Fisch, G.; D’Oliveira, F.A.F.; Sörgel, M.; Botía, S.; Machado, L.A.T.; Wolff, S.; dos Santos, R.M.N.; Pöhlker, C. Intercomparison of Planetary Boundary Layer Heights Using Remote Sensing Retrievals and ERA5 Reanalysis over Central Amazonia. Remote Sens. 2022, 14, 4561. [Google Scholar] [CrossRef]
- Constantinidou, K.; Hadjinicolaou, P.; Zittis, G.; Lelieveld, J. Performance of Land Surface Schemes in the WRF Model for Climate Simulations over the MENA-CORDEX Domain. Earth Syst. Environ. 2020, 4, 647–665. [Google Scholar] [CrossRef]
- Lee, C.B.; Kim, J.-C.; Belorid, M.; Zhao, P. Performance Evaluation of Four Different Land Surface Models in WRF. Asian J. Atmos. Environ. 2016, 10, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Misenis, C.; Zhang, Y. An Examination of Sensitivity of WRF/Chem Predictions to Physical Parameterizations, Horizontal Grid Spacing, and Nesting Options. Atmos. Res. 2010, 97, 315–334. [Google Scholar] [CrossRef]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K. Impacts of Land Surface Model and Land Use Data on WRF Model Simulations of Rainfall and Temperature over Lake Tana Basin, Ethiopia. Heliyon 2019, 5, e02469. [Google Scholar] [CrossRef]
- Zhuo, L.; Dai, Q.; Han, D.; Chen, N.; Zhao, B. Assessment of Simulated Soil Moisture from WRF Noah, Noah-MP, and CLM Land Surface Schemes for Landslide Hazard Application. Hydrol. Earth Syst. Sci. 2019, 23, 4199–4218. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, E.; Giovannini, L.; Zardi, D.; de Franceschi, M. Optimization of Noah and Noah_MP WRF Land Surface Schemes in Snow-Melting Conditions over Complex Terrain. Mon. Weather Rev. 2017, 145, 4727–4745. [Google Scholar] [CrossRef]
- Lu, S.; Guo, W.; Xue, Y.; Huang, F.; Ge, J. Simulation of Summer Climate over Central Asia Shows High Sensitivity to Different Land Surface Schemes in WRF. Clim. Dyn. 2021, 57, 2249–2268. [Google Scholar] [CrossRef]
- Jin, J.; Miller, N.L.; Schlegel, N. Sensitivity Study of Four Land Surface Schemes in the WRF Model. Adv. Meteorol. 2010, 2010, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.; Wang, T.; Wang, X.; Xie, M.; Jiang, Z.; Huang, X.; Zhu, J. Impacts of Different Urban Canopy Schemes in WRF/Chem on Regional Climate and Air Quality in Yangtze River Delta, China. Atmos. Res. 2014, 145–146, 226–243. [Google Scholar] [CrossRef] [Green Version]
Scheme | Vegetation Processes | Soil Variables and Features | Number of Soil Layers | Thickness of Soil Layers (Top to Bottom, cm) | Total Thickness (cm) |
---|---|---|---|---|---|
1 5-Layer | No | Temperature. No moisture or frozen soil | 5 | 1, 2, 4, 8, 16 | 31 |
2 Noah | Yes | Temperature, water+ice, water. Moisture and frozen soil | 4 | 10, 30, 60, 100 | 200 |
3 RUC | Yes | Temperature, ice, water+ice. Moistures and frozen soil | 6 (default) | 0, 5, 20, 40, 160, 300 | 525 |
4 Pleim–Xiu | Yes | Temperature, moisture | 2 | 1, 99 | 100 |
Domains | Nomenclature | Size (Cells) | Spatial Resolution (km) |
---|---|---|---|
Master (Figure 1a) | D01 | 70 × 70 | 27 |
First subdomain (Figure 1b) | D02 | 52 × 52 | 9 |
Second subdomain (Figure 1b) | D03 | 61 × 42 | 3 |
Third (inner) subdomain (Figure 1c) | D04 | 100 × 82 | 1 |
Component and WRF-Chem Option Nomenclature | WRF-Chem Option | Model, Description, and References |
---|---|---|
Microphysics (mp_physics) | 4 | WRF Single–moment 5–class (Hong et al., 2004) [30] |
Longwave Radiation (ra_lw_physics) | 1 | RRTM (Mlawer et al., 1997) [31] |
Shortwave Radiation (ra_sw_physics) | 2 | Goddard (Chou and Suarez, 1999) [32] |
Surface Layer (sf_clay_physics) | 1 | MM5 similarity (Paulson, 1970) [33] |
Planetary Boundary Layer (bl_pbl_physics) | 1 | Yonsei University (Hong et al., 2006) [34] |
Cumulus Parameterization (cu_physics) | 5 | Grell 3D Ensemble (Grell, 1993) [35] |
Options of chemical mechanisms and aerosol modules (chem_opt) | 7 | CBMZ (Zaveri and Peters, 1999) and MOSAIC (4 sectional aerosol bins) (Zaveri et al., 2008) [28,29] |
Land Surface (sf_surface_physics) | 1 | (Dudhia, 1996) [10] |
2 | (Chen and Dudhia, 2001) [11] | |
3 | (Smirnova et al., 1997, 2000) [12,13] | |
7 | (Pleim and Xiu, 1995; Xiu and Pleim, 2001) [14,15] | |
Urban surface (sf_urban_physics) | 0 | No urban physics |
1 | Single-layer UCM (Kusaka et al., 2001; Kusaka and Kimura, 2004; Chen et al., 2006) [36,37,38]. This option can be used with the Noah land surface scheme |
Variable | Metric | Benchmark or Ideal Value | Accuracy |
---|---|---|---|
Hourly surface temperature | GE | <2 °C | ±2 °C |
MB | <±0.5 °C | ||
IOA | ≥0.8 | ||
Hourly wind speed (10 m above the surface) | RMSE | <2 m s−1 | ±1 m s−1 |
MB | <±0.5 m s−1 | ||
IOA | ≥0.6 | ||
Hourly wind direction (10 m above the surface) | GE | <30° | ±30° |
MB | <±10° | ||
Short-term air quality (daily concentrations): Maximum 1 h CO mean, maximum 8 h CO mean, 24 h PM2.5 mean, maximum 8 h O3 mean | MB | 0 | ±50% |
RMSE | 0 | ||
FB | 0 | ||
MNB | 0 | ||
r | 1 | ||
Long-term air quality (monthly concentrations): NO2 and O3 | ±30% |
Land Surface Scheme: | 1 5-Layer | 2 Noah | 3 RUC | 4 Pleim–Xiu | 5 Noah UCM | Benchmark |
---|---|---|---|---|---|---|
Hourly surface temperature: | ||||||
GE | 2.7 | 1.3 | 3.6 | 1.8 | 2.4 | <2 °C |
MB | −0.9 | 0.1 | 1.0 | −0.5 | −1.9 | <±0.5 °C |
IOA | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | ≥0.8 |
Hourly wind speed: | ||||||
RMSE | 1.1 | 0.9 | 1.1 | 1.6 | 1.4 | <2 m s−1 |
MB | 0.2 | 0.2 | 0.0 | 0.0 | 0.5 | <±0.5 m s−1 |
IOA | 0.8 | 0.9 | 0.8 | 0.6 | 0.8 | ≥0.6 |
Hourly wind direction: | ||||||
GE | 69.1 | 61.9 | 67.8 | 73.3 | 73.3 | <30° |
MB | 12.0 | −20.8 | 6.1 | −8.9 | 22.3 | <±10° |
Land Surface Scheme: | 1 5-Layer | 2 Noah | 3 RUC | 4 Pleim–Xiu | 5 Noah UCM | Number of Records |
---|---|---|---|---|---|---|
Hourly surface temperature | 38.0 | 78.0 | 34.8 | 63.8 | 50.9 | 644 |
Hourly wind speed | 66.9 | 76.9 | 71.0 | 49.5 | 62.4 | 644 |
Hourly wind direction | 32.9 | 37.1 | 31.8 | 25.8 | 31.4 | 644 |
Land Surface Scheme: | 1 5-Layer | 2 Noah | 3 RUC | 4 Pleim–Xiu | 5 Noah UCM | Ideal Value |
---|---|---|---|---|---|---|
Maximum 1 h CO mean: | ||||||
MB | 1.41 | 0.10 | 1.41 | 0.87 | 3.47 | 0 |
RMSE | 1.74 | 0.56 | 1.73 | 1.60 | 3.91 | 0 |
FB | 59.7 | 6.1 | 59.9 | 41.6 | 102.5 | 0 |
MNB | 88.44 | 8.42 | 89.38 | 55.50 | 216.89 | 0 |
r | 0.41 | 0.41 | 0.37 | 0.22 | 0.33 | 1 |
Maximum 8 h CO mean: | ||||||
MB | 0.17 | −0.09 | 0.45 | 0.70 | 0.81 | 0 |
RMSE | 0.35 | 0.21 | 0.58 | 1.02 | 0.96 | 0 |
FB | 18.1 | −10.7 | 41.5 | 57.8 | 64.31 | 0 |
MNB | 19.70 | −9.52 | 52.52 | 81.73 | 95.43 | 0 |
r | 0.43 | 0.38 | 0.40 | 0.25 | 0.34 | 1 |
24 h PM2.5 mean: | ||||||
MB | 4.52 | 1.17 | 5.50 | 5.92 | 26.65 | 0 |
RMSE | 5.78 | 3.25 | 6.94 | 8.68 | 30.75 | 0 |
FB | 52.4 | 16.8 | 60.2 | 63.4 | 135.28 | 0 |
MNB | 107.59 | 45.73 | 130.72 | 139.34 | 512.89 | 0 |
r | 0.06 | 0.01 | −0.06 | −0.09 | 0.09 | 1 |
Maximum 8 h O3 mean: | ||||||
MB | 15.31 | 15.29 | 10.54 | 5.55 | 12.35 | 0 |
RMSE | 18.57 | 18.51 | 15.59 | 13.11 | 16.31 | 0 |
FB | 23.4 | 23.3 | 16.7 | 9.1 | 19.28 | 0 |
MNB | 30.84 | 30.61 | 21.99 | 12.62 | 25.16 | 0 |
r | 0.09 | 0.20 | 0.18 | 0.25 | 0.24 | 1 |
Land Surface Scheme: | 1 5-Layer | 2 Noah | 3 RUC | 4 Pleim–Xiu | 5 Noah UCM | Number ofRecords |
---|---|---|---|---|---|---|
Short-term air quality: | ||||||
Maximum 1 h CO mean | 29.6 | 92.6 | 25.9 | 40.7 | 7.4 | 27 |
Maximum 8 h CO mean | 74.1 | 100.0 | 48.1 | 37.0 | 22.2 | 27 |
24 h PM2.5 mean | 44.4 | 63.0 | 29.6 | 33.3 | 3.7 | 27 |
Maximum 8 h O3 mean | 85.2 | 85.2 | 85.2 | 96.3 | 85.2 | 27 |
Long-term air quality: | ||||||
NO2, monthly mean | 80.0 | 93.3 | 80.0 | 73.3 | 73.3 | 15 |
O3, monthly mean | 93.8 | 56.3 | 93.8 | 56.3 | 93.8 | 16 |
Region | Period | Model | Main Results | Reference |
---|---|---|---|---|
Andean region of Ecuador | September 2014 | WRF-Chem V3.2 | Noah provided better performances for modeling meteorological and air quality variables than the 5-Layer, RUC, and Pleim–Xiu schemes. The combination of the 2 Noah land surface scheme and the Urban Canopy Model option was not better than modeling with the 2 Noah scheme alone. Moreover, this combination produced the poorest results for CO and PM2.5 | This contribution |
Oregon, United States | 22 to 28 September 2014 | WRF V3.7.1 | The Pleim–Xiu scheme produced lower and more reliable sensible heat fluxes than Noah. However, Noah’s latent heat fluxes improved compared to Pleim–Xiu, when North American Regional Reanalysis forcing data was used. | Sun et al. (2017) [2] |
South of Chile | One year | WRF V4.0 | The 5-Layer was better than an improved version of the Noah scheme | Somos and Manquehual (2020) [3] |
Southern Italy | March 2016 | WRF-Chem V3.6.1 | The Noah and an improved Noah scheme were better, especially for modeling daily average PM10 concentrations, compared to RUC | Rizza et al. (2018) [4] |
Tibetan Plateau | March 2017 | WRF V3.7.1 | The near-surface air temperature was sensitive to land surface schemes. The Community land surface model was better for modeling a snow event compared to Noah, and an improved Noah scheme | Liu et al. (2019) [5] |
East China | 23 July 2003 | WRF V3.0 | The 5-Layer and Noah schemes had approximately the same performance. RUC produced the maximum differences with records | Zeng et al. (2015) [8] |
Middle East-North Africa | 2000 to 2010 | WRF V3.8.1 | The Noah land surface scheme was better for modeling temperature and rainfall compared to an improved Noah scheme, RUC, and the Community land surface scheme | Constantinidou et al. (2020) [47] |
Haean basin-South Korea | 23 to 26 September 2010 | WRF V3.3 | The significant impact of the land surface scheme was shown in meteorological simulations. The best agreement between observation and simulation was obtained for Noah, compared to 5-Layer, RUC, and Pleim–Xiu | Lee et al. (2016) [48] |
Houston, United States | Five-day summer episode during 2000 | WRF-Chem V3.6.1 | Both meteorological and chemical predictions at the surface and aloft show stronger sensitivity to the land surface compared to planetary boundary layers schemes | Misenis and Zhang (2010) [49] |
Lake Tana Basin, Ethiopia | March to August 2015 | WRF V3.8 | Temperature and rainfall were sensitive to land surface schemes and land use data choice. RUC and updated USGS land use data were better for temperature. Noah and updated USGS land use were better for rainfall | Teklay et al. (2019) [50] |
Northern Italy | 2006 to 2015 | WRF V3.8 | An improved Noah version simulated a dry soil event close to records. There were no differences for rainfall modeling using Noah, improved Noah, and a third land surface scheme | Zhuo et al. (2019) [51] |
Eastern Italian Alps | 12 to 15 February 2006 | WRF V3.8.1 | Noah and an improved Noah scheme improved their modeling performance for near-surface temperature over snow-covered terrain after modification of the mean grid cell albedo | Tomasi et al. (2017) [52] |
Central Asia | Summers from 2000 to 2018 | WRF V4.0 | Modeled variables (2 m temperature and rainfall) were sensitive to land surface schemes. The Community land surface scheme was better than Pleim–Xiu and an improved Noah scheme | Lu et al. (2021) [53] |
Western United States | 1 October 1995 to 30 September 1996 | WRF V3.0 | Land surface schemes strongly affect temperature simulations. The Community land surface model was better for modeling compared to the 5-Layer, Noah, and RUC schemes | Jin et al. (2010) [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra, R. Assessment of Land Surface Schemes from the WRF-Chem for Atmospheric Modeling in the Andean Region of Ecuador. Atmosphere 2023, 14, 508. https://doi.org/10.3390/atmos14030508
Parra R. Assessment of Land Surface Schemes from the WRF-Chem for Atmospheric Modeling in the Andean Region of Ecuador. Atmosphere. 2023; 14(3):508. https://doi.org/10.3390/atmos14030508
Chicago/Turabian StyleParra, Rene. 2023. "Assessment of Land Surface Schemes from the WRF-Chem for Atmospheric Modeling in the Andean Region of Ecuador" Atmosphere 14, no. 3: 508. https://doi.org/10.3390/atmos14030508
APA StyleParra, R. (2023). Assessment of Land Surface Schemes from the WRF-Chem for Atmospheric Modeling in the Andean Region of Ecuador. Atmosphere, 14(3), 508. https://doi.org/10.3390/atmos14030508