Mid-Latitude Jet Response to Pan-Arctic and Regional Arctic Warming in Idealized GCM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Experiment Set-Up
3. Results
3.1. Thermal and Dynamical Response from Pan-Arctic Forcing
3.2. Thermal and Dynamical Response from Regional Arctic Forcing
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, N.C.; Xie, S.P.; Kosaka, Y.; Li, X. Increasing Occurrence of Cold and Warm Extremes during the Recent Global Warming Slowdown. Nat. Commun. 2018, 9, 1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing Trends in Regional Heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic Has Warmed Nearly Four Times Faster than the Globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Cohen, J.; Zhang, X.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.J.; Bhatt, U.S.; Chen, H.W.; Coumou, D.; et al. Divergent Consensuses on Arctic Amplification Influence on Midlatitude Severe Winter Weather. Nat. Clim. Chang. 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Kim, B.M.; Son, S.W.; Min, S.K.; Jeong, J.H.; Kim, S.J.; Zhang, X.; Shim, T.; Yoon, J.H. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss. Nat. Commun. 2014, 5, 4646. [Google Scholar] [CrossRef] [Green Version]
- Polvani, L.M.; Waugh, D.W. Upward Wave Activity Flux as a Precursor to Extreme Stratospheric Events and Subsequent Anomalous Surface Weather Regimes. J. Clim. 2004, 17, 3548–3554. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, G.; Liu, Y.; Huang, J.; Nie, H. A Dynamic and Thermodynamic Coupling View of the Linkages between Eurasian Cooling and Arctic Warming. Clim. Dyn. 2022, 58, 2725–2744. [Google Scholar] [CrossRef]
- Blackport, R.; Screen, J.A.; van der Wiel, K.; Bintanja, R. Minimal Influence of Reduced Arctic Sea Ice on Coincident Cold Winters in Mid-Latitudes. Nat. Clim. Chang. 2019, 9, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Blackport, R.; Screen, J.A. Weakened Evidence for Mid-Latitude Impacts of Arctic Warming. Nat. Clim. Change 2020, 10, 1065–1066. [Google Scholar] [CrossRef]
- Kug, J.S.; Jeong, J.H.; Jang, Y.S.; Kim, B.M.; Folland, C.K.; Min, S.K.; Son, S.W. Two Distinct Influences of Arctic Warming on Cold Winters over North America and East Asia. Nat. Geosci. 2015, 8, 759–762. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. Increasing Fall-Winter Energy Loss from the Arctic Ocean and Its Role in Arctic Temperature Amplification. Geophys. Res. Lett. 2010, 37, 16707. [Google Scholar] [CrossRef] [Green Version]
- Mori, M.; Watanabe, M.; Shiogama, H.; Inoue, J.; Kimoto, M. Robust Arctic Sea-Ice Influence on the Frequent Eurasian Cold Winters in Past Decades. Nat. Geosci. 2014, 7, 869–873. [Google Scholar] [CrossRef]
- Butler, A.H.; Thompson, D.W.J.; Heikes, R. The Steady-State Atmospheric Circulation Response to Climate Change-like Thermal Forcings in a Simple General Circulation Model. J. Clim. 2010, 23, 3474–3496. [Google Scholar] [CrossRef]
- Lu, J.; Chen, G.; Frierson, D.M.W. The Position of the Midlatitude Storm Track and Eddy-Driven Westerlies in Aquaplanet AGCMs. J. Atmos. Sci. 2010, 67, 3984–4000. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.M.; Frierson, D.M.W.; Held, I.M. The Tropical Response to Extratropical Thermal Forcing in an Idealized GCM: The Importance of Radiative Feedbacks and Convective Parameterization. J. Atmos. Sci. 2009, 66, 2812–2827. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Kang, S.M.; Watanabe, M. Dependence of Arctic Climate on the Latitudinal Position of Stationary Waves and to High-Latitudes Surface Warming. Clim. Dyn. 2017, 49, 3753–3763. [Google Scholar] [CrossRef]
- Lee, J.; Son, S.; Kim, S.; Song, K. The Sensitivity of the Extratropical Jet to the Stratospheric Mean State in a Dynamic-Core General Circulation Model. Atmosphere 2021, 31, 171–183. [Google Scholar]
- Kaspi, Y.; Schneider, T. Winter Cold of Eastern Continental Boundaries Induced by Warm Ocean Waters. Nature 2011, 471, 621–624. [Google Scholar] [CrossRef] [Green Version]
- Frierson, D.M.W.; Held, I.M.; Zurita-Gotor, P. A Gray-Radiation Aquaplanet Moist GCM. Part I: Static Stability and Eddy Scale. J. Atmos. Sci. 2006, 63, 2548–2566. [Google Scholar] [CrossRef]
- Frierson, D.M.W.; Held, I.M.; Zurita-Gotor, P. A Gray-Radiation Aquaplanet Moist GCM. Part II: Energy Transports in Altered Climates. J. Atmos. Sci. 2007, 64, 1680–1693. [Google Scholar] [CrossRef] [Green Version]
- Frierson, D.M.W.; Lu, J.; Chen, G. Width of the Hadley Cell in Simple and Comprehensive General Circulation Models. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.M.; Held, I.M.; Frierson, D.M.W.; Zhao, M. The Response of the ITCZ to Extratropical Thermal Forcing: Idealized Slab-Ocean Experiments with a GCM. J. Clim. 2008, 21, 3521–3532. [Google Scholar] [CrossRef] [Green Version]
- Hell, M.C.; Schneider, T.; Li, C. Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model. J. Atmos. Sci. 2020, 77, 531–549. [Google Scholar] [CrossRef] [Green Version]
- Adam, O.; Grise, K.; Staten, P.; Simpson, I.; Davis, S.; Davis, N.; Waugh, D.; Birner, T. The TropD Software Package: Standardized Methods for Calculating Tropical Width Diagnostics. Geosci. Model Dev. 2018, 11, 4339–4357. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Barlow, M.; Kushner, P.J.; Saito, K. Stratosphere-Troposphere Coupling and Links with Eurasian Land Surface Variability. J. Clim. 2007, 20, 5335–5343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.-H.; Moon, W.; Noh, H.; Kim, B.-M. Mid-Latitude Jet Response to Pan-Arctic and Regional Arctic Warming in Idealized GCM. Atmosphere 2023, 14, 510. https://doi.org/10.3390/atmos14030510
Yang G-H, Moon W, Noh H, Kim B-M. Mid-Latitude Jet Response to Pan-Arctic and Regional Arctic Warming in Idealized GCM. Atmosphere. 2023; 14(3):510. https://doi.org/10.3390/atmos14030510
Chicago/Turabian StyleYang, Gun-Hwan, Woosok Moon, Hayeon Noh, and Baek-Min Kim. 2023. "Mid-Latitude Jet Response to Pan-Arctic and Regional Arctic Warming in Idealized GCM" Atmosphere 14, no. 3: 510. https://doi.org/10.3390/atmos14030510
APA StyleYang, G. -H., Moon, W., Noh, H., & Kim, B. -M. (2023). Mid-Latitude Jet Response to Pan-Arctic and Regional Arctic Warming in Idealized GCM. Atmosphere, 14(3), 510. https://doi.org/10.3390/atmos14030510