Surface Wave Mixing Modifies Projections of 21st Century Ocean Heat Uptake
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Church, J.A.; White, N.J.; Konikow, L.F.; Domingues, C.M.; Graham Cogley, J.; Rignot, E.; Gregory, J.M.; van den Broeke, M.R.; Monaghan, A.J.; Velicogna, I. Revisiting the Earth’s Sea-Level and Energy Budgets from 1961 to 2008. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Rhein, M.; Rintoul, S.R.; Aoki, S.; Campos, E.; Chambers, D.; Feely, R.A.; Gulev, S.; Johnson, G.C.; Josey, S.A.; Kostianoy, A.; et al. Observations: Ocean. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Gill, A.E. Atmosphere–Ocean Dynamics; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Soloviev, A.; Lukas, R. The Near-Surface Layer of the Ocean: Structure Dynamics and Applications; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Domingues, C.M.; Church, J.A.; White, N.J.; Gleckler, P.J.; Wijffels, S.E.; Barker, P.M.; Dunn, J.R. Improved Estimates of Upper-Ocean Warming and Multi-Decadal Sea-Level Rise. Nature 2008, 453, 1090–1093. [Google Scholar] [CrossRef]
- Cheng, L.; Abraham, J.P.; Hausfather, Z.; Trenberth, K.E. How Fast Are the Oceans Warming? Science 2019, 363, 128–129. [Google Scholar] [CrossRef]
- Von Schuckmann, K.; Le Traon, P.Y. How Well Can We Derive Global Ocean Indicators from Argo Data? Ocean Sci. 2011, 7, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Baranova, O.K.; Garcia, H.E.; Locarnini, R.A.; Mishonov, A.V.; Reagan, J.R.; Seidov, D.; Yarosh, E.S.; et al. World Ocean Heat Content and Thermosteric Sea Level Change (0–2000m), 1955–2010. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Purkey, S.G.; Johnson, G.C. Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets. J. Clim. 2010, 23, 6336–6351. [Google Scholar] [CrossRef] [Green Version]
- Kouketsu, S.; Doi, T.; Kawano, T.; Masuda, S.; Sugiura, N.; Sasaki, Y.; Toyoda, T.; Igarashi, H.; Kawai, Y.; Katsumata, K.; et al. Deep Ocean Heat Content Changes Estimated from Observation and Reanalysis Product and Their Influence on Sea Level Change. J. Geophys. Res. Ocean. 2011, 116, 1–16. [Google Scholar] [CrossRef]
- Church, J.; Clark, P.; Cazenave, A.; Gregory, J.; Jevrejeva, S.; Levermann, A.; Merrifield, M.; Milne, G.; Nerem, R.; Nunn, P.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1137–1215. [Google Scholar]
- Oppenheimer, M.; Glavovic, B.; Hinkel, J.; van de Wal, R.; Magnan, A.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; 2019; in press. [Google Scholar]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; 2018; in press. [Google Scholar]
- Cavaleri, L.; Fox-Kemper, B.; Hemer, M.A. Wind Waves in the Coupled Climate System. Bull. Am. Meteorol. Soc. 2012, 93, 1651–1661. [Google Scholar] [CrossRef]
- Benilov, A.Y. On the Turbulence Generated by the Potential Surface Waves. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- McWilliams, J.C.; Sullivan, P.P.; Moeng, C.H. Langmuir Turbulence in the Ocean. J. Fluid Mech. 1997, 334, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Babanin, A.V.; Ganopolski, A.; Phillips, W.R.C. Wave-Induced Upper-Ocean Mixing in a Climate Model of Intermediate Complexity. Ocean Model. 2009, 29, 189–197. [Google Scholar] [CrossRef]
- Ghantous, M.; Babanin, A.V. Ocean Mixing by Wave Orbital Motion. Acta Phys. Slovaca 2014, 64, 1–56. [Google Scholar] [CrossRef]
- Qiao, F.; Yuan, Y.; Yang, Y.; Zheng, Q.; Xia, C.; Ma, J. Wave-Induced Mixing in the Upper Ocean: Distribution and Application to a Global Ocean Circulation Model. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Shu, Q.; Qiao, F.; Song, Z.; Xia, C.; Yang, Y. Improvement of MOM4 by Including Surface Wave-Induced Vertical Mixing. Ocean Model. 2011, 40, 42–51. [Google Scholar] [CrossRef]
- Huang, C.J.; Qiao, F.; Shu, Q.; Song, Z. Evaluating Austral Summer Mixed-Layer Response to Surface Wave-Induced Mixing in the Southern Ocean. J. Geophys. Res. Ocean. 2012, 117, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pleskachevsky, A.; Dobrynin, M.; Babanin, A.V.; Günther, H.; Stanev, E. Turbulent Mixing Due to Surface Waves Indicated by Remote Sensing of Suspended Particulate Matter and Its Implementation into Coupled Modeling of Waves, Turbulence, and Circulation. J. Phys. Oceanogr. 2011, 41, 708–724. [Google Scholar] [CrossRef]
- Toffoli, A.; McConochie, J.; Ghantous, M.; Loffredo, L.; Babanin, A.V. The Effect of Wave-Induced Turbulence on the Ocean Mixed Layer during Tropical Cyclones: Field Observations on the Australian North-West Shelf. J. Geophys. Res. Ocean. 2012, 117, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.J.E.; Govekar, P.; Babanin, A.V.; Ghantous, M.; Spence, P.; Scoccimarro, E. The Effect on Simulated Ocean Climate of a Parameterization of Unbroken Wave-Induced Mixing Incorporated into the k-Epsilon Mixing Scheme. J. Adv. Model. Earth Syst. 2017, 9, 1–24. [Google Scholar] [CrossRef]
- Chen, S.; Qiao, F.; Huang, C.; Song, Z. Effects of the non-breaking surface wave-induced vertical mixing on winter mixed layer depth in subtropical regions. J. Geophys. Res. Oceans 2018, 123, 2934–2944. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.; Babanin, A.V.; Walsh, K.J.E.; Stoney, L.; Heil, P. Effect of Wave-Induced Mixing on Sea Ice in a High-Resolution Ocean Model. Ocean Dyn. 2019, 69, 737–746. [Google Scholar] [CrossRef]
- Stoney, L.; Walsh, K.J.E.; Thomas, S.; Spence, P.; Babanin, A.V. Changes in Ocean Heat Content Caused by Wave-Induced Mixing in a High-Resolution Ocean Model. J. Phys. Oceanogr. 2018, 48, 1139–1150. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Song, Z.; Qiao, F. FIO-ESM version 2.0: Model description and evaluation. J. Geophys. Res. Oceans 2020, 125, e2019JC016036. [Google Scholar] [CrossRef]
- Danabasoglu, G.; Lamarque, J.-F.; Bacmeister, J.; Bailey, D.A.; DuVivier, A.K.; Edwards, J.; Emmons, L.K.; Fasullo, J.; Garcia, R.; Gettelman, A.; et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model Earth Syst. 2020, 12, e2019MS001916. [Google Scholar] [CrossRef] [Green Version]
- Young, I.R.; Zieger, S.; Babanin, A.V. Global Trends in Wind Speed and Wave Height. Science 2011, 332, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Young, I.R.; Ribal, A. Multi-Platform Evaluation of Global Trends in Wind Speed and Wave Height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected future changes in wind-wave climate in a multi-model ensemble. Nat. Clim. Chang. 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Meucci, A.; Young, I.R.; Hemer, M.; Trenham, C.; Watterson, I.G. 140 Years of Global Ocean Wind-Wave Climate Derived from CMIP6 ACCESS-CM2 and EC-Earth3 GCMs: Global Trends, Regional Changes, and Future Projections. J. Clim. 2023, 36, 1605–1631. [Google Scholar] [CrossRef]
- Kiss, A.E.; Hogg, A.M.; Hannah, N.; Boeira Dias, F.; Brassington, G.B.; Chamberlain, M.A.; Chapman, C.; Dobrohotoff, P.; Domingues, C.M.; Duran, E.R.; et al. ACCESS-OM2: A Global Ocean-Sea Ice Model at Three Resolutions. Geosci. Model Dev. 2020, 13, 401–442. [Google Scholar] [CrossRef] [Green Version]
- Umlauf, L.; Burchard, H. Second-Order Turbulence Closure Models for Geophysical Boundary Layers. A Review of Recent Work. Cont. Shelf Res. 2005, 25, 795–827. [Google Scholar] [CrossRef]
- Ghantous, M.; Babanin, A.V. One-Dimensional Modelling of Upper Ocean Mixing by Turbulence Due to Wave Orbital Motion. Nonlinear Process. Geophys. 2014, 21, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Umlauf, L.; Bolding, K.; Burchard, H. GOTM scientific documentation, Version 4.0. Available online: www.gotm.net (accessed on 1 February 2023).
- Young, I.R.; Babanin, A.V.; Zieger, S. The Decay Rate of Ocean Swell Observed by Altimeter. J. Phys. Oceanogr. 2013, 43, 2322–2333. [Google Scholar] [CrossRef]
- Qiao, F.; Song, Z.; Bao, Y.; Song, Y.; Shu, Q.; Huang, C.J.; Zhao, W. Development and Evaluation of an Earth System Model with Surface Gravity Waves. J. Geophys. Res. Ocean. 2013, 118, 4514–4524. [Google Scholar] [CrossRef]
- Collins, W.D.; Rasch, P.J.; Boville, B.A.; Hack, J.J.; McCaa, J.R.; Williamson, D.L.; Kiehl, J.T.; Briegleb, B. Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Technol. Note 2004, 226, 1326–1334. [Google Scholar] [CrossRef]
- Tolman, H.L.; The WAVEWATCH III Development Group. User Manual and System Documentation of WAVEWATCH III Version 5.16; Environmental Modeling Center, Marine Modeling and Analysis Branch, National Centers for Environmental Prediction: College Park, MD, USA, 2016.
- Liu, Q.; Rogers, W.E.; Babanin, A.V.; Young, I.R.; Romero, L.; Zieger, S.; Qiao, F.; Guan, C. Observation-Based Source Terms in the Third-Generation Wave Model WAVEWATCH III: Updates and Verification. J. Phys. Oceanogr. 2019, 49, 489–517. [Google Scholar] [CrossRef]
Simulation | Years | Description | OHC (J) |
---|---|---|---|
M1A | 2014–2034 | Present-day climate without wave-induced mixing | 6.67467 × 1025 |
M1B | 2014–2034 | Present-day climate with wave-induced mixing | 6.68025 × 1025 |
M2A | 2080–2100 | Future climate without wave-induced mixing | 6.67694 × 1025 |
M2B | 2080–2100 | Future climate with wave-induced mixing | 6.68246 × 1025 |
Comparison | Description | ∆OHC |
---|---|---|
(M1B − M1A) | Wave-induced heat (present-day climate; total) | 5.58 × 1022 J |
(M1B − M1A)/M1A | Wave-induced heat (present-day climate; relative) | 0.0836% |
(M2B − M2A) | Wave-induced heat (future climate; total) | 5.52 × 1022 J |
(M2B − M2A)/M2A | Wave-induced heat (future climate; relative) | 0.0827% |
Comparison | Description | ∆OHC |
---|---|---|
(M2A − M1A) | The ‘standard’ projection: expected OHC increase by the end of the 21st century under RCP4.5 | 2.27 × 1022 J |
(M2B − M1B) | The ‘modified’ projection: expected OHC increase by the end of the 21st century under RCP4.5 if wave-induced mixing is accounted for | 2.21 × 1022 J |
(M2B − M1B) − (M2A − M1A) | Difference between the standard and modified projections of ocean heat uptake by the end of the 21st century, i.e., the effect of wave-induced mixing (total) | −6.00 × 1020 J |
((M2B − M1B) − (M2A − M1A))/(M2A − M1A) | Difference between the standard and modified projections of ocean heat uptake by the end of the 21st century, i.e., the effect of wave-induced mixing (relative) | −2.64% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kousal, J.; Walsh, K.J.E.; Song, Z.; Liu, Q.; Qiao, F.; Babanin, A.V. Surface Wave Mixing Modifies Projections of 21st Century Ocean Heat Uptake. Atmosphere 2023, 14, 532. https://doi.org/10.3390/atmos14030532
Kousal J, Walsh KJE, Song Z, Liu Q, Qiao F, Babanin AV. Surface Wave Mixing Modifies Projections of 21st Century Ocean Heat Uptake. Atmosphere. 2023; 14(3):532. https://doi.org/10.3390/atmos14030532
Chicago/Turabian StyleKousal, Joshua, Kevin J. E. Walsh, Zhenya Song, Qingxiang Liu, Fangli Qiao, and Alexander V. Babanin. 2023. "Surface Wave Mixing Modifies Projections of 21st Century Ocean Heat Uptake" Atmosphere 14, no. 3: 532. https://doi.org/10.3390/atmos14030532
APA StyleKousal, J., Walsh, K. J. E., Song, Z., Liu, Q., Qiao, F., & Babanin, A. V. (2023). Surface Wave Mixing Modifies Projections of 21st Century Ocean Heat Uptake. Atmosphere, 14(3), 532. https://doi.org/10.3390/atmos14030532