The Effect of Abrupt Changes to Sources of PM10 and PM2.5 Concentrations in Three Major Agglomerations in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. AOD Data
2.3. Greater Mexico City (GMC) Ground Stations’ Data
2.4. Metropolitan Area of Guadalajara (MAG) Ground Stations’ Data
2.5. Metropolitan Area of Monterrey (MTY) Ground Stations’ Data
2.6. Methodology
3. Results
3.1. Aerosol Optical Depth (AOD)
3.2. Effect of Lockdowns on PM (10 and 2.5) Concentrations
3.2.1. PM10 Mean Concentrations’ Comparison
3.2.2. PM2.5 Mean Concentration Comparison
3.3. Effect of Winds on PM Concentrations
3.4. Days Exceeding Air Quality Norm
3.4.1. Exceedances of PM10
3.4.2. Exceedances of PM2.5
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Code in Map | Station | PM10 | PM2.5 | Meteorology 1 | Location | Data Availability (%) |
---|---|---|---|---|---|---|
Greater Mexico City | PM10|PM2.5 | |||||
M1 | ACO | Yes | No | Yes | Acolman | 100 |
M2 | BJU | Yes | Yes | Yes | Benito Juárez | 85.71|85.71 |
M3 | CUA | Yes | No | Yes | Cuajimalpa | 100 |
M4 | CUT | Yes | No | Yes | Cuautitlán | 100 |
M5 | FAC | Yes | No | Yes | FES Acatlán | 100 |
M6 | MER | Yes | Yes | Yes | La Merced | 100|100 |
M7 | NEZ | No | Yes | Yes | Nezahualcóyotl | 100 |
M8 | SAG | Yes | Yes | Yes | San Agustín | 100|100 |
M9 | SFE | Yes | Yes | Yes | Santa Fé | 85.71|100 |
M10 | TAH | Yes | No | Yes | Tláhuac | 100 |
M11 | TLA | Yes | Yes | Yes | Tlalnepantla | 100|100 |
M12 | UAX | No | Yes | Yes | UAM Xochimilco | 100 |
M13 | UIZ | Yes | Yes | Yes | UAM Iztapalapa | 85.71|85.71 |
M14 | VIF | Yes | No | Yes | Villa de las Flores | 100 |
Metropolitan Area of Guadalajara | PM10|PM2.5 | |||||
G1 | ATE | Yes | No | Yes | Atemajac | 88.98 * |
G2 | OBL | Yes | No | Yes | Oblatos | 90.82 * |
G3 | MIR | Yes | Yes | Yes | Miravalle | 76.59|89.14 ** |
G4 | VAL | Yes | No | Yes | Vallarta | 90.80 * |
Metropolitan Area of Monterrey | PM10|PM2.5 | |||||
T1 | SE | Yes | Yes | Yes | La Pastora | 96.67|71.97 *** |
T2 | NE | Yes | Yes | Yes | San Nicolás | 98.31|30.26 *** |
T3 | CE | Yes | Yes | Yes | Obispado | 95.61|76.04 *** |
T4 | NO | Yes | Yes | Yes | San Bernabé | 97.99|54.37 *** |
T5 | SO | Yes | Yes | Yes | Santa Catarina | 98.70|61.80 ** |
T6 | NTE | Yes | Yes | Yes | Escobedo | 91.87|16.13 *** |
T7 | NE2 | Yes | Yes | Yes | Apodaca | 94.22|54.56 *** |
T8 | SE2 | Yes | Yes | Yes | Juárez | 95.98|15.74 *** |
Appendix B
References
- Environmental Protection Agency. Particulate Matter (PM) Basics. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 2 December 2022).
- Li, C.; Managi, S. Contribution of on-road transportation to PM2.5. Sci. Rep. 2021, 11, 21320. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.K.; Patra, A.K.; Gorai, A.K. A Review on Estimation of Particulate Matter from Satellite-Based Aerosol Optical Depth: Data, Methods and Challenges Asia Pac. J. Atmos. Sci. 2021, 57, 679–699. [Google Scholar] [CrossRef]
- Cipolla, M.; Sorgenti, M.; Gentile, C.; Bishara, M.M. Air Pollution and lung diseases. In Clinical Handbook of Air Pollution-Related Deseases; Springer: New York, NY, USA, 2018; pp. 327–339. [Google Scholar]
- Oh, H.-J.; Ma, Y.; Kim, J. Human Inhalation Exposure to Aerosol and Health Effect: Aerosol Monitoring and Modelling Regional Deposited Doses. Int. J. Environ. Res. Public Health 2020, 17, 1923. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.; Ualiyeva, D.; Khan, A.; Zaman, N.; Sapkota, S.; Khan, A.; Ali, B.; Ghafoor, D. A correlation among the COVID-19 Spread, Particulate Matters, and Angiotensing-Converting Enzyme 1: A Review. J. Environ. Public Health 2021, 2021, 5524098. [Google Scholar] [CrossRef] [PubMed]
- Pansini, R.; Fornacca, D. Early Spread of COVID-19 in the Air-Polluted Regions of Eight Severly Affected Countries. Atmosphere 2021, 12, 795. [Google Scholar] [CrossRef]
- Donzelli, G.; Biggeri, A.; Tobias, A.; Nottmeyer, L.N.; Sera, F. Role of meteorological factors on SARS-CoV-2 infection incidence in Italy and Spain before the vaccination campaign. A multi-city time series study. Environ. Res. 2022, 211, 113134. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Air pollution and COVID-19 motality in the United States: Strenghts and limitations of an ecological regression analysis. Sci. Adv. 2020, 6, eabd4049. [Google Scholar] [CrossRef]
- Liu, C.; Cai, J.; Chen, R.; Sera, F.; Guo, Y.; Tong, S.; Li, S.; Lavigne, E.; Correa, P.M.; Ortega, N.V. Coarse Particulate Air Pollution and Daily Mortality: A Global Study in 205 Cities. Am. J. Respir. Crit. Care. Med. 2022, 206, 999–1007. [Google Scholar] [CrossRef]
- Le, V.V.; Huynh, T.T.; Ölcer, A.; Hoang, A.T.; Le, A.T.; Nayak, S.K.; Pham, V.V. A remarkable review of the effect of lockdowns during COVID-19 pandemic on global PM emissions. Energy Sources Part A 2020. [Google Scholar] [CrossRef]
- Marinello, S.; Butturi, M.A.; Gamberini, R. How changes in human activities during the lockdown impacted ari quality parameters: A review. Environ. Prog. Sustain. Energy 2021, 40, e13672. [Google Scholar] [CrossRef]
- Rani, S.; Kumar, R.; Acharya, P.; Maharana, P.; Singh, R. Assesing the spatial distribution of aerosols and air quality over the Ganga River basin during COVID-19 lockdown phase-1. Remote Sens. Appl. Soc. Environ. 2021, 23, 100546. [Google Scholar] [CrossRef]
- Rovetta, A. The impact of COVID-19 Lockdowns on Particulate Matter Emissions in Lombardy and Italian’s Citizen’s Comsumption Habits. Front. Sustain. 2021, 2, 649715. [Google Scholar] [CrossRef]
- Suárez, C.; Quezada, M.S.; Ruiz, S.O.; de Jesús, E.R. Epidemiología de COVID-19 en México: Del 27 de febrero al 30 de abril de 2020. Rev. Clín. Esp. 2020, 220, 463–471. [Google Scholar] [CrossRef]
- Gobierno de la Ciudad de México. Gaceta Oficial de la Ciudad de México. Available online: https://data.consejeria.cdmx.gob.mx/portal_old/uploads/gacetas/182dba042c9d9530ccac4e8d99f81f73.pdf (accessed on 2 December 2022).
- Mendez-Astudillo, J.; Caetano, E.; Pereyra-Castro, K. Synergy between the Urban Heat Island and the Urban Pollution Island in Mexico City during the Dry Season. Aerosol Air Qual. Res. 2022, 22, 210278. [Google Scholar] [CrossRef]
- Morales-Solís, K.; Ahumada, H.; Rojas, J.P.; Urdanivia, F.R.; Catalán, F.; Claramunt, T.; Toro, R.A.; Manzano, C.A.; Leiva-Guzmán, M.A. The effect of COVID-19 lockdowns on the air pollution of urban areas of central and southern Chile. Aerosol Air Qual. Res. 2021, 21, 200677. [Google Scholar] [CrossRef]
- Peralta, O.; Ortínez-Alvarez, A.; Torres-Jardón, R.; Manuel, S.-L.; Castro, T.; Ruíz-Suárez, L.G. Ozone over Mexico City durinig the COVID-19 pandemic. Sci. Total Environ. 2021, 761, 143183. [Google Scholar] [CrossRef] [PubMed]
- INEGI. Censo 2020. Available online: https://www.inegi.org.mx/programas/ccpv/2020/default.html (accessed on 2 December 2022).
- Xu, X.; Zhang, C. Estimation of ground-level PM2.5 concentration using MODIS AOD and corrected regression model over Beijing, China. PLoS ONE 2020, 15, e0240430. [Google Scholar] [CrossRef] [PubMed]
- Lyapustin, A.; Wang, Y. MCD19A2 MODIS/Terra+Aqua Land Aerosol Optical Depth Daily L2G Global 1 km SIN Grid V006. 2018 [dataset]. Available online: https://doi.org/10.5067/MODIS/MCD19A2.006 (accessed on 15 March 2022).
- Gorelic, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scake geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- DGCA. Objetivos del Monitoreo de la Calidad del Aire de la Red Automática de Monitoreo Atmosférico RAMA. Available online: http://www.aire.cdmx.gob.mx/objetivos-redes/objetivos-monitoreo-calidad-aire-rama.html (accessed on 2 December 2022).
- DGCA. Red de Meteorología y Radiación Solar. Available online: http://www.aire.cdmx.gob.mx/objetivos-redes/objetivos-monitoreo-calidad-aire-redmet.html (accessed on 2 December 2022).
- Chow, G.C. Tests of equality between sets of coefficients in two linear regressions. Econometrica 1960, 28, 591–605. [Google Scholar] [CrossRef] [Green Version]
- Cerrato-Álvarez, M.; Miró-Rodríguez, C.; Pinilla-Gil, E. Effect of COVID-19 lockdown on air quality in urban and suburban areas of Extremadura, Southwest Spain: A case study in usually low polluted areas. Rev. Int. Contam. Ambient. 2021, 37, 237–247. [Google Scholar] [CrossRef]
- Thomas, J.; Jainet, P.J.; Sudheer, K.P. Ambient air quality of a less industrialized region of India (Kerala) during the COVID-19 lockdown. Anthropocene 2020, 32, 100270. [Google Scholar] [CrossRef]
- DGCA. Informe Anual del la Calidad del Aire. 2018. Available online: http://www.aire.cdmx.gob.mx/descargas/publicaciones/informe-anual-calidad-del-aire-2018.pdf (accessed on 2 December 2022).
- Klimont, Z.; Kupiainen, K.; Heyes, C.; Purohit, P.; Cofala, J.; Rafaj, P.; Borken-Kleefeld, J.; Wolfgang, S. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 2017, 17, 8681–8723. [Google Scholar] [CrossRef] [Green Version]
- Padoan, E.; Maffia, J.; Balsari, P.; Ajmone-Marsan, F.; Dinuccio, E. Soil PM10 emission potential under specific mechanical stress and particles characteristics. Sci. Total Environ. 2021, 779, 146468. [Google Scholar] [CrossRef]
- Porter, W.C.; Heald, C.L.; Cooley, D.; Russell, B. Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression. Atmos. Chem. Phys. 2015, 15, 10349–10366. [Google Scholar] [CrossRef] [Green Version]
- CONAGUA. Monitor de Sequía en México. Available online: https://smn.conagua.gob.mx/es/climatologia/monitor-de-sequia/monitor-de-sequia-en-mexico (accessed on 15 February 2022).
- ICAyCC. Sequía 2020-2021: La Seguda más Severa del Registro Reciente. Available online: https://www.atmosfera.unam.mx/sequia-2020-2021-la-segunda-mas-severa-del-registro-reciente/ (accessed on 15 February 2022).
- Bhardwaj, P.; Pandey, A.K.; Kumar, K.; Jain, V.K. Seasonal variability of aerosols and their characteristics in urban and rural locations of Delhi-NCR. Remote Sens. Technol. Appl. Urban Environ. II 2017, 10431, 31–37. [Google Scholar] [CrossRef]
- García-Escalante, J.S.; García-Reynoso, J.A.; Jazcilevich-Diamant, A.; Ruiz-Suárez, L.G. The influence of the Tula, Hidalgo complex on the air quality of the Mexico City Metropolitan Area. Atmosfera 2014, 27, 215–225. [Google Scholar] [CrossRef]
- Díaz-Nigenda, E.; Tatarko, J.; Jazcilevich-Diamant, A.; García, A.R.; Caetano, E.; Ruíz-Suarez, G. A modeling study of Aeolian erosion enhanced by surface wind confluences over Mexico Cit. Aeolian Res. 2010, 2, 61–70. [Google Scholar] [CrossRef]
- Li, Y.; Tong, D.; Ma, S.; Zhang, X.; Kondragunta, S.; Li, F.; Saylor, R. Dominance of wildfires impact on air quality exceedances during the 2020 record-breaking wildfire season in the United States. Geophys. Res. Lett 2021, 48, e2021GL094908. [Google Scholar] [CrossRef]
- Bolaño-Diaz, S.; Camargo-Caicedo, Y.; Bernal, F.T.; Bolaño-Ortiz, T.R. The Effect of Forest Fire Events on Air Quality: A Case Study of Northern Colombia. Fire 2022, 5, 191. [Google Scholar] [CrossRef]
- El Occidental 2020. Incendio Forestal en el Paraje las Canoas. Available online: https://www.eloccidental.com.mx/policiaca/se-registra-un-incendio-forestal-en-el-paraje-las-canoas-4817577.html (accessed on 15 February 2023). (In Spanish).
- Magaña-Rueda, V.O.; Pérez-Sánchez, T.; López-Arias, M.G.; Galván-Ortíz, G.; Palma, G. Atlas de Riesgos Hidrometeorológicos y Climáticos en el Área Metropolitana de Guadalajara;Institute of Geography, National Autonomous University of Mexico, Mexico City, Mexico. 2020. Available online: https://zapotlanejo.gob.mx/archivos/Atlas%20Metropolitano%20de%20RIESGOS%20del%20%C3%81rea%20Metroplolitana%20de%20Guadalajara.pdf (accessed on 15 February 2023). (In Spanish) (Executive Summary Version).
- Ramanathan, V.; Crutzen, P.; Kiehl, J.; Rosenfeld, D. Aerosols, Climate, and the Hydrological Cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
At Day of the Year (DOY) 83, 23 March 2020 | ||
---|---|---|
PM10 | PM2.5 | |
Mexico City | F = 12.392, p-value = 1.06 × 10−5 | F = 0.88454, p-value = 0.4151 |
Guadalajara | F = 0.93567, p-value = 0.3946 | F = 4.2504, p-value = 0.01609 |
Monterrey ** | F = 0.17646, p-value = 0.8384 | F = 1.107, p-value = 0.3333 |
April (%) | May (%) | April | May | ||||||
---|---|---|---|---|---|---|---|---|---|
2020 vs. av | 2021 vs. av | 2020 vs. av | 2021 vs. av | Z Score | |||||
Greater Mexico City | ACO | −14.77 | 21.61 | −38.11 | −18.91 | −2.77 ** | −3.08 ** | −6.75 ** | −3.37 ** |
BJU | −3.46 | 0 | −8.9 | −18.25 | −1.27 + | −0.4 + | −2.78 * | −3.47 ** | |
CAM | −28.63 | −2.4 | −46.27 | −31.21 | −5.62 ** | −0.56 + | −6.43 ** | −6.11 ** | |
CUA | 0 | −3.25 | 0 | −5.98 | −0.12 + | −1.2 + | −0.15 + | −1.06 + | |
CUT | −6.22 | −2.47 | −10.14 | −20.58 | −1.42 + | −1.07 + | −1.87 * | −3.43 ** | |
FAC | −28.71 | 29.28 | −78.6 | 0 | −2.46 * | −3.65 ** | −6.75 ** | −0.05 + | |
MER | −17.69 | −12.3 | −23.06 | −53.52 | −3.61 ** | −2.44 * | −4.4 ** | −6.72 ** | |
SAG | −10.79 | −21.46 | −4.23 | −12.53 | −1.98 * | −5.68 ** | −0.67 + | −1.14 + | |
SFE | −18.51 | −15.69 | −28.37 | −35.2 | −3.61 ** | −3.96 ** | −5.02 ** | −6.08 ** | |
TAH | −7.53 | −5.81 | −77.95 | −41.15 | −1.58 + | −0.28 + | −6.16 ** | −5.96 ** | |
TLA | −32.62 | −37.9 | −27.67 | −50.97 | −5.87 ** | −6.09 ** | −5.19 ** | −6.72 ** | |
UIZ | −4.76 | 17.55 | −7.79 | −18.71 | −1.23 + | −2.89 ** | −2.22 * | −2.98 ** | |
VIF | −12.12 | −6.88 | −6.55 | −4.21 | −2.87 ** | −0.12 + | −0.87 + | −0.91 + | |
Total | −14.29 | −3.06 | −27.51 | −23.94 | |||||
Monterrey Metropolitan Area | SE | −30.07 | 21.01 | −37.89 | 1.31 | −3.86 ** | −1.95 * | −5.26 ** | −0.02 + |
NE | −36.71 | −17.86 | −37.38 | −33 | −5.49 ** | −2.44 * | −6.01 ** | −5.4 ** | |
CE | −35.13 | 18.07 | −42.81 | 4.15 | −5.15 ** | −2.35 * | −5.88 ** | 0.12 + | |
NO | −56.44 | −23.28 | −53.93 | −30.01 | −6.58 ** | −3.4 ** | −6.75 ** | −4.99 ** | |
SO | −34.38 | 6.19 | −38 | −9.32 | −4.75 ** | 0.01 + | −5.71 ** | −1.77 * | |
NTE | −31.74 | 9.73 | −25.32 | −2.01 | −4.93 ** | −0.41 + | −5.01 ** | −0.67 + | |
NE2 | −20.93 | −2.17 | −33.73 | −11.08 | −2.57 ** | −0.64 + | −5.37 ** | −2.87 ** | |
SE2 | −23.52 | 10.39 | −24 | 2.35 | −3.99 ** | −1.61 + | −5.81 ** | −0.04 + | |
Total | −33.62 | 2.76 | −36.63 | −9.70 | |||||
Metropolitan Area of Guadalajara | ATE | 0 | −15.02 | −0.32 + | −3.6 ** | ||||
MIR | −15.29 | −29.25 | −3.6 ** | −4.47 ** | |||||
OBL | −2.14 | −14.43 | −0.49 + | −3.15 ** | |||||
VAL | −15.29 | −19.64 | −2.5 * | −3.23 ** | |||||
Total | −8.18 | −19.585 |
Station | April (%) | May (%) | April | May | |||||
---|---|---|---|---|---|---|---|---|---|
Greater Mexico City | 2020 vs. av | 2021 vs. av | 2020 vs. av | 2021 vs. av | Z Score | ||||
BJU | 0 | −10.86 | 0 | 0 | −1.49 ** | −1.6 + | −3.2 ** | −5.12 ** | |
CAM | −29.21 | 0 | −31.32 | −29.66 | −5.31 ** | −0.7 + | −4.8 ** | −5.36 ** | |
CCA | −6.87 | −17.86 | −14.75 | −26.4 | −2.07 * | −1.9 * | −2.6 ** | −4.15 ** | |
MER | −17.73 | −2.67 | −20.4 | −32.99 | −3.99 ** | −0.007 + | −3.9 ** | −5.71 ** | |
NEZ | 18.85 | 12.59 | 16.48 | 13.82 | −2.89 ** | −1.45 + | −1.16 + | −1.99 * | |
SAG | −15.89 | −5.53 | −7.49 | −25.99 | −3.57 ** | −0.007 + | −1.54 + | −3.98 ** | |
SFE | −17.63 | −23.95 | −25.69 | −41.16 | −3.45 ** | −6.09 ** | −4.42 ** | −6.26 ** | |
TLA | −40.02 | −24.56 | −22.79 | −33.93 | −6.36 ** | −4.42 ** | −4.46 ** | −5.75 ** | |
UAX | −16.7 | −5.34 | −17.89 | −26.35 | −3.8 ** | −1.11 + | −2.8 ** | −4.2 ** | |
UIZ | −12.74 | −5.25 | −4.35 | −29.33 | −2.83 ** | −1.08 + | −1.67 * | −5.19 ** | |
Total | −13.79 | −8.34 | −12.82 | −23.20 | |||||
Monterrey Metropolitan Area | SE | 7.67 | 39.89 | −32.18 | −19.52 | −0.09 + | −2.63 ** | −4.27 ** | −2.88 ** |
NE | −9.29 | 3.43 | −21.23 | −27.23 | −2.07 * | −0.27 + | −3.57 ** | −4.25 ** | |
CE | 43.43 | 60.12 | −34.7 | −34.57 | −3.3 ** | −4.22 ** | −2.67 ** | −1.56 + | |
NO | −42.75 | −14.6 | −54.55 | −46.53 | −5.31 ** | −2.23* | −6.33 ** | −3.54 ** | |
SO | −20.1 | 0.63 | −37.32 | −23.18 | −3.96 ** | −0.05 ** | −5.39 ** | −4.2 ** | |
NTE | −30.2 | 3.19 | −58.76 | −52.51 | −3.51 ** | −0.03 + | −6.26 ** | −6.15 ** | |
NE2 | −30.86 | −20.86 | −44.72 | −42.95 | −1.64 * | −2.84 + | −6.06 ** | −6.03 ** | |
SE2 | 9.26 | 16.74 | −23.06 | −35.6 | −0.67 + | −1.48 ** | −3.63 ** | −4.35 ** | |
Total | −9.11 | 11.07 | −38.32 | −35.26 | |||||
Guadalajara | MIR | −3.16 | −27.84 | −0.4 + | −2.68 ** |
Station | Relation | Pollutant | |
---|---|---|---|
Greater Mexico City | ACO | Pos | PM10 |
BJU | No | na | |
CUA | Neg | PM10 | |
CUT | Neg | PM10 | |
FAC | No | na | |
MER | Neg | PM2.5 | |
NEZ | Neg | PM10 | |
SAG | Neg | PM2.5/PM10 | |
SFE | Neg | PM2.5 | |
TAH | Neg | PM10 | |
TLA | Neg | PM10 | |
UAX | Neg | PM2.5 | |
UIZ | Neg | PM2.5 | |
VIF | Pos | PM10 | |
Monterrey Metropolitan Area | SE | No | na |
NE | No | na | |
CE | No | na | |
NO | Neg | PM2.5 | |
SO | Neg | PM10/PM2.5 | |
NTE | No | na | |
NE2 | Pos | PM10 | |
SE2 | No | na | |
Metropolitan Area of Guadalajara | ATE | No | na |
OBL | No | na | |
VAL | No | na | |
MIR | Neg | PM10/PM2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Astudillo, J.; Caetano, E. The Effect of Abrupt Changes to Sources of PM10 and PM2.5 Concentrations in Three Major Agglomerations in Mexico. Atmosphere 2023, 14, 596. https://doi.org/10.3390/atmos14030596
Méndez-Astudillo J, Caetano E. The Effect of Abrupt Changes to Sources of PM10 and PM2.5 Concentrations in Three Major Agglomerations in Mexico. Atmosphere. 2023; 14(3):596. https://doi.org/10.3390/atmos14030596
Chicago/Turabian StyleMéndez-Astudillo, Jorge, and Ernesto Caetano. 2023. "The Effect of Abrupt Changes to Sources of PM10 and PM2.5 Concentrations in Three Major Agglomerations in Mexico" Atmosphere 14, no. 3: 596. https://doi.org/10.3390/atmos14030596
APA StyleMéndez-Astudillo, J., & Caetano, E. (2023). The Effect of Abrupt Changes to Sources of PM10 and PM2.5 Concentrations in Three Major Agglomerations in Mexico. Atmosphere, 14(3), 596. https://doi.org/10.3390/atmos14030596