Coupling Coordination Degree of AOD and Air Pollutants in Shandong Province from 2015 to 2020
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Linear Regression Trend Analysis
2.2.2. Standardization of Pollution Indicators
2.2.3. Coupling Degree Model
2.2.4. Coupling Coordination Degree Model
3. Results
3.1. Spatial and Temporal Variations of AOD
3.1.1. Interannual Variations of AOD
3.1.2. Quarterly Variations of AOD
3.2. Coupling Degree and Coupling Coordination Degree between AOD and AQI
3.2.1. Interannual Coupling Degree and Coupling Coordination Degree between AOD and AQI
3.2.2. Quarterly Coupling Degree and Coupling Coordination Degree between AOD and AQI
3.3. Coupling Degree and Coupling Coordination Degree between AOD and Pollutants
3.3.1. Interannual Coupling Degree and Coupling Coordination Degree between AOD and Pollutants
3.3.2. Quarterly Coupling Degree and Coupling Coordination Degree between AOD and Pollutants
4. Discussion
4.1. Spatial and Temporal Variations of AOD
4.2. Coupling Degree and Coupling Coordination Degree between AOD and AQI
4.3. Coupling Degree and Coupling Coordination Degree between AOD and Pollutants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.A.; Bilal, M.; Wang, Y.; Qiu, Z.; Nichol, J.E.; de Leeuw, G.; Ke, S.; Mhawish, A.; Almazroui, M.; Mazhar, U.; et al. Evaluation and comparison of CMIP6 models and MERRA-2 reanalysis AOD against Satellite observations from 2000 to 2014 over China. Geosci. Front. 2022, 13, 101325. [Google Scholar] [CrossRef]
- Tao, M.; Wang, J.; Li, R.; Wang, L.; Wang, L.; Wang, Z.; Tao, J.; Che, H.; Chen, L. Performance of MODIS high-resolution MAIAC aerosol algorithm in China: Characterization and limitation. Atmos. Environ. 2019, 213, 159–169. [Google Scholar] [CrossRef]
- Tariq, S.; Qayyum, F.; Ul-Haq, Z.; Mehmood, U. Long-term spatiotemporal trends in aerosol optical depth and its relationship with enhanced vegetation index and meteorological parameters over South Asia. Environ. Sci. Pollut. Res. 2022, 29, 30638–30655. [Google Scholar] [CrossRef] [PubMed]
- ul-Haq, Z.; Tariq, S.; Ali, M. Spatiotemporal patterns of correlation between atmospheric nitrogen dioxide and aerosols over South Asia. Meteorol. Atmos. Phys. 2017, 129, 507–527. [Google Scholar] [CrossRef]
- Ali, G.; Bao, Y.; Ullah, W.; Ullah, S.; Guan, Q.; Liu, X.; Li, L.; Lei, Y.; Li, G.; Ma, J. Spatiotemporal Trends of Aerosols over Urban Regions in Pakistan and Their Possible Links to Meteorological Parameters. Atmosphere 2020, 11, 306. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Koren, I.; Rudich, Y. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect. Heliyon 2015, 1, e00036. [Google Scholar] [CrossRef] [Green Version]
- Samset, B.H.; Stjern, C.W.; Andrews, E.; Kahn, R.A.; Myhre, G.; Schulz, M.; Schuster, G.L. Aerosol Absorption: Progress Towards Global and Regional Constraints. Curr. Clim. Chang. Rep. 2018, 4, 65–83. [Google Scholar] [CrossRef] [Green Version]
- Ching, J.; Kajino, M. Aerosol mixing state matters for particles deposition in human respiratory system. Sci. Rep. 2018, 8, 8864. [Google Scholar] [CrossRef] [Green Version]
- Shindell, D.; Kuylenstierna, J.C.I.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S.C.; Muller, N.; Janssens-Maenhout, G.; Raes, F.; et al. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science 2012, 335, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, Y.; Hu, M.; Pan, X.; Shi, J.; Chen, F.; He, K.; Koutrakis, P.; Christiani, D.C. Acute health impacts of airborne particles estimated from satellite remote sensing. Environ. Int. 2013, 51, 150–159. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.; Speizer, F.E. An Association between Air Pollution and Mortality in Six U.S. Cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Khoshsima, M.; Bidokhti, A.A.; Ahmadi-Givi, F. Variations of aerosol optical depth and Angstrom parameters at a suburban location in Iran during 2009–2010. J. Earth Syst. Sci. 2014, 123, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Alföldy, B.; Osán, J.; Tóth, Z.; Török, S.; Harbusch, A.; Jahn, C.; Emeis, S.; Schäfer, K. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest. Sci. Total Environ. 2007, 383, 141–163. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Wang, T.; Qian, Y. Rapid improvement in air quality due to aerosol-pollution control during 2012–2018: An evidence observed in Kunshan in the Yangtze River Delta, China. Atmos. Pollut. Res. 2020, 11, 693–701. [Google Scholar] [CrossRef]
- Quan, J.; Wang, Q.; Ma, P.; Dou, Y.; Liao, Z.; Pan, Y.; Cheng, Z.; Ding, D.; Jia, X. Secondary aerosol formation in cloud serves as a vital source of aerosol in the troposphere. Atmos. Environ. 2021, 253, 118374. [Google Scholar] [CrossRef]
- Sun, Y.; Du, W.; Wang, Q.; Zhang, Q.; Chen, C.; Chen, Y.; Chen, Z.; Fu, P.; Wang, Z.; Gao, Z.; et al. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry. Environ. Sci. Technol. 2015, 49, 11340–11347. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Karimian, H.; Wang, S.; Fang, S. The relationship between air quality and MODIS aerosol optical depth in major cities of the Yangtze River Delta. Chemosphere 2022, 308, 136301. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-C.; Jeng, Y.-J.; Chu, D.A.; Chen, J.-P.; Chang, S.-C. Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmos. Environ. 2011, 45, 4777–4788. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Lacis, A.A. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ. 2015, 102, 260–273. [Google Scholar] [CrossRef]
- Sreekanth, V.; Mahesh, B.; Niranjan, K. Satellite remote sensing of fine particulate air pollutants over Indian mega cities. Adv. Space Res. 2017, 60, 2268–2276. [Google Scholar] [CrossRef]
- Shi, Y.; Deng, Q.; Wu, J.; Wang, J. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City. Remote Sens. Land Resour. 2020, 32, 106–114. [Google Scholar] [CrossRef]
- Ruan, O.; Liu, S.; Chen, F.; Chen, Y.; Luo, J.; Liang, P.; Yu, M. Correlation analysis between modis AOD and air pollutant concentration in Kunming city. J. Guizhou Norm. Univ. Nat. Sci. 2021, 39, 21–29. [Google Scholar] [CrossRef]
- Sorek-Hamer, M.; Franklin, M.; Chau, K.; Garay, M.; Kalashnikova, O. Spatiotemporal Characteristics of the Association between AOD and PM over the California Central Valley. Remote Sens. 2020, 12, 685. [Google Scholar] [CrossRef] [Green Version]
- Kamarul Zaman, N.A.F.; Kanniah, K.D.; Kaskaoutis, D.G. Estimating Particulate Matter using satellite based aerosol optical depth and meteorological variables in Malaysia. Atmos. Res. 2017, 193, 142–162. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Hao, Q.; Zhao, Z.; Xiong, W.; Chen, J.; Xin, J.; Jiang, C. Characteristics of Aerosol Optical Depth in the Urban Area of Beibei and Its Correlation with Particle Concentration. Environ. Sci. 2020, 41, 1067–1077. [Google Scholar] [CrossRef]
- Shao, P.; Xin, J.; An, J.; Kong, L.; Wang, B.; Wang, J.; Wang, Y.; Wu, D. The empirical relationship between PM2.5 and AOD in Nanjing of the Yangtze River Delta. Atmos. Pollut. Res. 2017, 8, 233–243. [Google Scholar] [CrossRef]
- Xiao, Z.; Xie, X.; Lin, X.; Xie, J.; Chen, J.; Shi, Y.; Chen, Y. The spatio-temporal characteristics of aerosol optical thickness as well as the relationship with PM2.5 in Xiamen city, China. Environ. Monit. Assess. 2020, 192, 676. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Tian, Y.; He, Q.; Zhang, Y.; Peng, Y.; Hong, S. Spatial non-coupling of air pollutant emissions and particulate matterrelated air quality: A case study in Wuhan City, China. Prog. Geogr. 2019, 38, 612–624. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L. Examination of a coupling coordination relationship between urbanization and the eco-environment: Case study of Hangzhou. Acta Sci. Circumstantiae 2018, 38, 4214–4222. [Google Scholar] [CrossRef]
- Sun, L.; Wang, A.; Wang, J. Spatial Characteristics Analysis for Coupling Strength among Air Pollutants during a Severe Haze Period in Zhengzhou, China. Int. J. Environ. Res. Public Health 2022, 19, 8224. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Xu, Y.; Sun, S.; Wang, Y. Revisiting PM2.5 pollution along urban-rural gradient and its coupling with urbanization process, a new perspective from urban pollution island analysis. Urban Clim. 2022, 45, 101270. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z.; Hou, Y.; Zhao, G.; Zhang, L. The coupling coordination degree between urbanization and air environment in the Beijing(Jing)-Tianjin(Jin)-Hebei(Ji) urban agglomeration. Ecol. Indic. 2022, 137, 108787. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Wu, X.; Ding, Y.; Zhou, S.; Tan, Y. Temporal characteristic and source analysis of PM2.5 in the most polluted city agglomeration of China. Atmos. Pollut. Res. 2018, 9, 1221–1230. [Google Scholar] [CrossRef]
- Xia, X.; Chen, H.; Goloub, P.; Zong, X.; Zhang, W.; Wang, P. Climatological aspects of aerosol optical properties in North China Plain based on ground and satellite remote-sensing data. J. Quant. Spectrosc. Radiat. Transf. 2013, 127, 12–23. [Google Scholar] [CrossRef]
- Song, Z.; Fu, D.; Zhang, X.; Wu, Y.; Xia, X.; He, J.; Han, X.; Zhang, R.; Che, H. Diurnal and seasonal variability of PM2.5 and AOD in North China plain: Comparison of MERRA-2 products and ground measurements. Atmos. Environ. 2018, 191, 70–78. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Cribb, M.; Dickerson, R.; Holben, B.; Li, C.; Lu, D.; Luo, Y.; Maring, H.; Shi, G.; et al. Preface to special section on East Asian Studies of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE). J. Geophys. Res. 2007, 112, D22S00. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, C.; Chen, H.; Tsay, S.C.; Holben, B.; Huang, J.; Li, B.; Maring, H.; Qian, Y.; Shi, G.; et al. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An overview. J. Geophys. Res. 2011, 116, D00K34. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Yang, Y.; Sun, Y.; Zhang, F.; Li, Y. Spatio-temporal Characteristics of Air Quality and Influencing Factors in Shandong Province from 2016 to 2020. Environ. Sci. 2022, 43, 2937–2946. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environmental of the People’s Republic of China (MEEP). China Environmental Status Bulletin 2019; Ministry of Ecology and Environmental of the People’s Republic of China: Beijing, China, 2020.
- Sathe, Y.; Kulkarni, S.; Gupta, P.; Kaginalkar, A.; Islam, S.; Gargava, P. Application of Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) and Weather Research Forecasting (WRF) model meteorological data for assessment of fine particulate matter (PM2.5) over India. Atmos. Pollut. Res. 2019, 10, 418–434. [Google Scholar] [CrossRef]
- Liu, N.; Zou, B.; Feng, H.; Wang, W.; Tang, Y.; Liang, Y. Evaluation and comparison of multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue aerosol products over China. Atmos. Chem. Phys. 2019, 19, 8243–8268. [Google Scholar] [CrossRef] [Green Version]
- Ghotbi, S.; Sotoudeheian, S.; Arhami, M. Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model. Atmos. Environ. 2016, 141, 333–346. [Google Scholar] [CrossRef]
- Wang, W.; Mao, F.; Pan, Z.; Du, L.; Gong, W. Validation of VIIRS AOD through a Comparison with a Sun Photometer and MODIS AODs over Wuhan. Remote Sens. 2017, 9, 403. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Zhao, T.; Xie, Y.; Zheng, Y.; Zhu, J.; Xia, J.; Cao, L.; Wang, C.; Che, H.; Liao, Y.; et al. Variation of the aerosol optical properties and validation of MODIS AOD products over the eastern edge of the Tibetan Plateau based on ground-based remote sensing in 2017. Atmos. Environ. 2020, 223, 117257. [Google Scholar] [CrossRef]
- Zhang, J.; Xin, J.; Zhang, W.; Wang, S.; Wang, L.; Xie, W.; Xiao, G.; Pan, H.; Kong, L. Validation of MODIS C6 AOD products retrieved by the Dark Target method in the Beijing–Tianjin–Hebei urban agglomeration, China. Adv. Atmos. Sci. 2017, 34, 993–1002. [Google Scholar] [CrossRef]
- Shu, X.L.; Gao, Y.P.; Zhang, Y.X.; Yang, C.Y. Study on the Coupling Relationship and Coordinative Development between Tourism Industry and Ecocivilization City. China Popul. Resour. Environ. 2015, 25, 82–90. [Google Scholar] [CrossRef]
- Cong, X.N. Expression and Mathematical Property of Coupling Model, and Its Misuse in Geographical Science. Econ. Geogr. 2019, 39, 18–25. [Google Scholar] [CrossRef]
- Tian, S.; Yang, B.; Liu, Z.; Li, X.; Zhang, W. Coupling Coordination of Urban Pseudo and Reality Human Settlements. Land 2022, 11, 414. [Google Scholar] [CrossRef]
- Hao, C.; Guo, L.; Wang, F.; Liu, M.; Jiao, L. Research on Coupling Degree of Atmospheric Aerosols and Pollutants in Bejing-Tianjin-Hebei Region. J. North China Univ. Sci. Technol. Nat. Sci. Ed. 2021, 43, 86–95. [Google Scholar]
- Feng, D.; Shen, Q. Optimization of ecological environment in Shanghai based on correlation and coupling analysis. Urban Plan. Forum 2015, 226, 75–83. [Google Scholar] [CrossRef]
- Ma, X.; Wang, J.; Yu, F.; Jia, H.; Hu, Y. Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China? Atmos. Res. 2016, 181, 250–256. [Google Scholar] [CrossRef]
- Lin, G.; Fei, M.; Ming-liang, M. Spatiotemporal Variation and Influencing Factors of AOD in the North China Plain. Environ. Sci. 2022, 43, 3483–3493. [Google Scholar] [CrossRef]
- Xue, R.; Ai, B.; Lin, Y.; Pang, B.; Shang, H. Spatial and Temporal Distribution of Aerosol Optical Depth and Its Relationship with Urbanization in Shandong Province. Atmosphere 2019, 10, 110. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Wang, Z.; Shi, J.; Zhong, Y.; Ding, Y. Variation Characteristics and Source Analysis of Pollutants in Jinghong before and after the COVID-19 Pandemic. Atmosphere 2022, 13, 1846. [Google Scholar] [CrossRef]
- Dang, H.-A.H.; Trinh, T.-A. Does the COVID-19 lockdown improve global air quality? New cross-national evidence on its unintended consequences. J. Environ. Econ. Manag. 2021, 105, 102401. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, X.; Zhang, X.; Hu, G. Multi-spatiotemporal patterns of aerosol optical depth and influencing factors during 2000–2020 from two spatial perspectives: The entire Yellow River Basin region and its urban agglomerations. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102643. [Google Scholar] [CrossRef]
- Deng, B.; Li, C.K.; Ji, Y.L. Analysis on the Treatment of Volatile Organic Compounds (VOCs) in Dongying City. China Stand. 2021, 581, 87–93. [Google Scholar] [CrossRef]
- Wu, H.; Gao, X.; Ma, Z.; Zhang, S. Effectiveness of production reduction policy on improving air quality in Dongying. IOP Conf. Ser. Earth Environ. Sci. 2019, 227, 052043. [Google Scholar] [CrossRef]
- Jiang, S.; Yu, H.; Li, Z.; Geng, B.; Li, T. Study on the Evolution of the Spatial-Temporal Pattern and the Influencing Mechanism of the Green Development Level of the Shandong Peninsula Urban Agglomeration. Sustainability 2022, 14, 9549. [Google Scholar] [CrossRef]
- Meng, Q.; Bai, H.Y.; Zhao, T.; Guo, S.Z.; Qi, G.Z. The eco-barrier effect of Qinling Mountain on aerosols. Remote Sens. Land Resour. 2021, 33, 240–248. [Google Scholar] [CrossRef]
- Rodríguez, S.; Cuevas, E.; González, Y.; Ramos, R.; Romero, P.M.; Pérez, N.; Querol, X.; Alastuey, A. Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5–10 concentrations in a coastal city. Atmos. Environ. 2008, 42, 6523–6534. [Google Scholar] [CrossRef]
- Yli-Juuti, T.; Mielonen, T.; Heikkinen, L.; Arola, A.; Ehn, M.; Isokääntä, S.; Keskinen, H.-M.; Kulmala, M.; Laakso, A.; Lipponen, A.; et al. Significance of the organic aerosol driven climate feedback in the boreal area. Nat. Commun. 2021, 12, 5637. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Liu, J.; Wang, Y.; Xu, L.; Guo, T.; Jia, B.; Cheng, P. Secondary organic aerosol formation from cis-3-hexen-1-ol/NOx photo-oxidation: The roles of cis-3-hexen-1-ol concentration, illumination intensity, NOx and NH3. Atmos. Environ. 2022, 278, 119090. [Google Scholar] [CrossRef]
- Nam, J.; Kim, S.-W.; Park, R.J.; Park, J.-S.; Park, S.S. Changes in column aerosol optical depth and ground-level particulate matter concentration over East Asia. Air Qual. Atmos. Health 2018, 11, 49–60. [Google Scholar] [CrossRef]
- Zhang, C. AQI Characteristics and Meteorological Cause Analysis of Severe Air Pollution Process in Heze City in Early May 2017. Sichuan Environ. 2020, 39, 51–56. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, B.; Wu, J.; Zhang, Q.; Feng, Y.; Bi, X.; Zhang, Y. Pollution characteristics of water-solubleions in ambient PM10 and PM2.5 during summer of 2015 in Heze City. Environ. Chem. 2019, 38, 729–737. [Google Scholar] [CrossRef]
- Zhu, Z.; Qiao, Y.; Liu, Q.; Lin, C.; Dang, E.; Fu, W.; Wang, G.; Dong, J. The impact of meteorological conditions on Air Quality Index under different urbanization gradients: A case from Taipei. Environ. Dev. Sustain. 2021, 23, 3994–4010. [Google Scholar] [CrossRef]
- Di, Y.; Li, R. Correlation analysis of AQI characteristics and meteorological conditions in heating season. IOP Conf. Ser. Earth Environ. Sci. 2019, 242, 022067. [Google Scholar] [CrossRef]
- He, L.; Wang, L.; Huang, B.; Wei, J.; Zhou, Z.; Zhong, Y. Anthropogenic and meteorological drivers of 1980–2016 trend in aerosol optical and radiative properties over the Yangtze River Basin. Atmos. Environ. 2020, 223, 117188. [Google Scholar] [CrossRef]
- Augustin, P.; Billet, S.; Crumeyrolle, S.; Deboudt, K.; Dieudonné, E.; Flament, P.; Fourmentin, M.; Guilbaud, S.; Hanoune, B.; Landkocz, Y.; et al. Impact of Sea Breeze Dynamics on Atmospheric Pollutants and Their Toxicity in Industrial and Urban Coastal Environments. Remote Sens. 2020, 12, 648. [Google Scholar] [CrossRef] [Green Version]
- VishnuRadhan, R.; Thresyamma, D.D.; Eldho, T.I.; Dhiman, R.; Bhavan, S.G. On the emergence of a health-pollutant-climate nexus in the wake of a global pandemic. Environ. Sci. Pollut. Res. 2022, 29, 85619–85631. [Google Scholar] [CrossRef]
- Sahraei, M.A.; Kuşkapan, E.; Çodur, M.Y. Public transit usage and air quality index during the COVID-19 lockdown. J. Environ. Manag. 2021, 286, 112166. [Google Scholar] [CrossRef]
- Xu, T.; Yan, H.; Bai, Y. Air Pollutant Analysis and AQI Prediction Based on GRA and Improved SOA-SVR by Considering COVID-19. Atmosphere 2021, 12, 336. [Google Scholar] [CrossRef]
- Li, W.; Shao, L.; Zhang, D.; Ro, C.-U.; Hu, M.; Bi, X.; Geng, H.; Matsuki, A.; Niu, H.; Chen, J. A review of single aerosol particle studies in the atmosphere of East Asia: Morphology, mixing state, source, and heterogeneous reactions. J. Clean. Prod. 2016, 112, 1330–1349. [Google Scholar] [CrossRef]
- Li, Q.; Ji, M.; Sun, Y.; Zhai, X.; Zheng, Y. Analysis and evaluation of air quality in Shandong province based on AHP. IOP Conf. Ser. Earth Environ. Sci. 2021, 651, 042033. [Google Scholar] [CrossRef]
- Jin, X.; Cai, X.; Yu, M.; Song, Y.; Wang, X.; Kang, L.; Zhang, H. Diagnostic analysis of wintertime PM2.5 pollution in the North China Plain: The impacts of regional transport and atmospheric boundary layer variation. Atmos. Environ. 2020, 224, 117346. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, J.; Zhang, P.; Li, Z.; Guo, C.; Wu, K.; Li, X.; Zhu, X.; Sun, Z.; Wei, Y. Chemical characterization, source apportionment, and health risk assessment of PM2.5 in a typical industrial region in North China. Environ. Sci. Pollut. Res. 2022, 29, 71696–71708. [Google Scholar] [CrossRef]
- Gharibzadeh, M.; Bidokhti, A.A.; Alam, K. The interaction of ozone and aerosol in a semi-arid region in the Middle East: Ozone formation and radiative forcing implications. Atmos. Environ. 2021, 245, 118015. [Google Scholar] [CrossRef]
- Chawala, P.; Priyan, R.S.; Sm, S.N. Climatology and landscape determinants of AOD, SO2 and NO2 over Indo-Gangetic Plain. Environ. Res. 2023, 220, 115125. [Google Scholar] [CrossRef]
- Xu, J.; Jia, H.; Zhou, H.; Kang, Y.; Zhong, K. Influences of offshore background wind on the formation of sea-land breeze and the characteristics of pollutant diffusion. Environ. Sci. Pollut. Res. 2021, 28, 68318–68329. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, X.; Cheng, C.; Yang, D. Spatiotemporal heterogeneity of PM2.5 and its relationship with urbanization in North China from 2000 to 2017. Sci. Total Environ. 2020, 744, 140925. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Liu, R.; Zhang, Y.; Shao, L.; Han, K.; Zhang, Y. 2328Pollution characteristics, source identification and potential ecological risk of 50 elements in atmospheric particulate matter during winter in Qingdao. Arab. J. Geosci. 2022, 15, 233. [Google Scholar] [CrossRef]
- Xing, H.; Zhu, L.; Chen, B.; Niu, J.; Li, X.; Feng, Y.; Fang, W. Spatial and temporal changes analysis of air quality before and after the COVID-19 in Shandong Province, China. Earth Sci. Inform. 2022, 15, 863–876. [Google Scholar] [CrossRef]
- Ju, T.; Pan, B.; Li, B.; Wang, J.; Liu, S.; Peng, S.; Li, M. A Characteristic Analysis of Various Air Pollutants and Their Correlation with O3 in the Jiangsu, Shandong, Henan, and Anhui Provinces of China. Sustainability 2022, 14, 13737. [Google Scholar] [CrossRef]
- Cichowicz, R.; Wielgosiński, G.; Fetter, W. Dispersion of atmospheric air pollution in summer and winter season. Environ. Monit. Assess. 2017, 189, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Miao, Y.; Che, H.; Liu, S. On the heavy aerosol pollution and its meteorological dependence in Shandong province, China. Atmos. Res. 2021, 256, 105572. [Google Scholar] [CrossRef]
U | Coupling Level | C | Coupling Coordination Level |
---|---|---|---|
(0.8, 1] | Excellent | (0.8, 1] | Excellent |
(0.6, 0.8] | Good | (0.6, 0.8] | Good |
(0.5, 0.6] | Normal | (0.5, 0.6] | Normal |
(0.4, 0.5] | Less poor | (0.4, 0.5] | Less poor |
(0.3, 0.4] | Bad | (0.3, 0.4] | Bad |
(0, 0.3] | Worse | (0, 0.3] | Worse |
City | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Average | Magnitude of Decrease | k |
---|---|---|---|---|---|---|---|---|---|
BinZhou | 0.774 | 0.818 | 0.698 | 0.654 | 0.597 | 0.590 | 0.689 | 23.77% | −0.047 |
DeZhou | 0.720 | 0.764 | 0.680 | 0.610 | 0.562 | 0.566 | 0.650 | 21.39% | −0.041 |
DongYing | 0.920 | 0.904 | 0.795 | 0.754 | 0.698 | 0.674 | 0.791 | 26.74% | −0.054 |
HeZe | 0.842 | 0.719 | 0.724 | 0.651 | 0.632 | 0.609 | 0.696 | 27.67% | −0.043 |
JiNan | 0.677 | 0.698 | 0.615 | 0.528 | 0.524 | 0.512 | 0.592 | 24.37% | −0.041 |
JiNing | 0.871 | 0.769 | 0.748 | 0.638 | 0.636 | 0.618 | 0.713 | 29.05% | −0.051 |
LiaoCheng | 0.836 | 0.816 | 0.776 | 0.683 | 0.625 | 0.637 | 0.729 | 23.80% | −0.048 |
LinYi | 0.714 | 0.642 | 0.589 | 0.503 | 0.515 | 0.514 | 0.580 | 28.01% | −0.042 |
QingDao | 0.638 | 0.619 | 0.559 | 0.526 | 0.522 | 0.526 | 0.565 | 17.56% | −0.025 |
RiZhao | 0.633 | 0.578 | 0.541 | 0.467 | 0.485 | 0.476 | 0.530 | 24.80% | −0.033 |
TaiAn | 0.750 | 0.693 | 0.629 | 0.513 | 0.528 | 0.509 | 0.604 | 32.13% | −0.052 |
WeiFang | 0.731 | 0.689 | 0.614 | 0.582 | 0.571 | 0.550 | 0.623 | 24.76% | −0.037 |
WeiHai | 0.534 | 0.482 | 0.438 | 0.455 | 0.407 | 0.454 | 0.462 | 14.98% | −0.017 |
YanTai | 0.527 | 0.501 | 0.429 | 0.445 | 0.417 | 0.438 | 0.460 | 16.89% | −0.020 |
ZaoZhuang | 0.794 | 0.700 | 0.661 | 0.588 | 0.569 | 0.539 | 0.642 | 32.12% | −0.050 |
ZiBo | 0.614 | 0.621 | 0.531 | 0.478 | 0.476 | 0.459 | 0.530 | 25.24% | −0.036 |
City | U | Coupling Level | C | Coupling Coordination Level |
---|---|---|---|---|
BinZhou | 0.9992 | Excellent | 0.8492 | Excellent |
DeZhou | 0.9657 | Excellent | 0.8660 | Excellent |
DongYing | 0.9847 | Excellent | 0.9163 | Excellent |
HeZe | 0.9870 | Excellent | 0.9163 | Excellent |
JiNan | 0.9245 | Excellent | 0.7728 | Good |
JiNing | 0.9999 | Excellent | 0.8693 | Excellent |
LiaoCheng | 0.9947 | Excellent | 0.9500 | Excellent |
LinYi | 0.9310 | Excellent | 0.7300 | Good |
QingDao | 0.9924 | Excellent | 0.5303 | Normal |
RiZhao | 0.9403 | Excellent | 0.5504 | Normal |
TaiAn | 0.9691 | Excellent | 0.7490 | Good |
WeiFang | 0.9805 | Excellent | 0.7761 | Good |
WeiHai | 0.6599 | Good | 0.0515 | Worse |
YanTai | 0.1573 | Worse | 0.1124 | Worse |
ZaoZhuang | 0.9720 | Excellent | 0.8366 | Excellent |
ZiBo | 0.7957 | Good | 0.6548 | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Tang, Q.; Zhu, Y.; He, Y.; Yu, Q.; Liang, T.; Ran, Y. Coupling Coordination Degree of AOD and Air Pollutants in Shandong Province from 2015 to 2020. Atmosphere 2023, 14, 654. https://doi.org/10.3390/atmos14040654
Wang P, Tang Q, Zhu Y, He Y, Yu Q, Liang T, Ran Y. Coupling Coordination Degree of AOD and Air Pollutants in Shandong Province from 2015 to 2020. Atmosphere. 2023; 14(4):654. https://doi.org/10.3390/atmos14040654
Chicago/Turabian StyleWang, Ping, Qingxin Tang, Yuxin Zhu, Yaqian He, Quanzhou Yu, Tianquan Liang, and Yuying Ran. 2023. "Coupling Coordination Degree of AOD and Air Pollutants in Shandong Province from 2015 to 2020" Atmosphere 14, no. 4: 654. https://doi.org/10.3390/atmos14040654
APA StyleWang, P., Tang, Q., Zhu, Y., He, Y., Yu, Q., Liang, T., & Ran, Y. (2023). Coupling Coordination Degree of AOD and Air Pollutants in Shandong Province from 2015 to 2020. Atmosphere, 14(4), 654. https://doi.org/10.3390/atmos14040654