Runoff Response to Climate in Two River Basins Supplied by Small Glacier Meltwater in Southern and Northern Tibetan Plateau
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.1.1. In Situ Data
- (1)
- Meteorological and hydrological data
- (2)
- Mass balance data
3.1.2. Satellite Data
- (1)
- Temperature
- (2)
- Precipitation
- (3)
- Evaporation
- (4)
- Snow cover
3.2. The Alpine Runoff Predictor
4. Results and Discussions
4.1. Model Calibration and Validation
4.2. The Influence of Adding Satellite Data on Model Performance
4.3. Interannual Variation and Trends of Runoffs
4.4. The Atmospheric Circulation Differences behind the Two River Basins
4.5. TP Glaciers’ Impacts on Rivers under Climate Change
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dyhrenfurth, G.O. To the Third Pole: The History of the High Himalaya, 1st ed.; Ex Libris; Werner Laurie: London, UK, 1955. [Google Scholar]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, W.; Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.; Gardner, A.; Hagen, J.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaci. 2014, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- RGI Consortium. Randolph Glacier Inventory–A Dataset of Global Glacier Outlines, Version 6 [Dataset]; National Snow and Ice Data Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Farinotti, D.; Huss, M.; Fürst, J.J.; Landmann, J.; Machguth, H.; Maussion, F.; Pandit, A. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 2019, 12, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Lutz, A.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar]
- You, Q.; Cai, Z.; Pepin, N.; Chen, D.; Ahrens, B.; Jiang, Z.; Wu, F.; Kang, S.; Zhang, R.; Wu, T.; et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Sci. Rev. 2021, 217, 103625. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, J.M.; Schaefer, J.M.; Rupper, S.; Corley, A. Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv. 2019, 5, v7266. [Google Scholar] [CrossRef] [Green Version]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.; Arendt, A.; Osmanoglu, B. A systematic, regional assessment of High Mountain Asia glacier mass balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L.; et al. The imbalance of the Asian water tower. Nat. Rev. Earth. Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Su, F.; Yang, D.; Hao, Z.; Tong, K. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 8500–8518. [Google Scholar] [CrossRef]
- Lan, C.; Zhang, Y.; Zhu, F.; Liang, L. Characteristics and changes of streamflow on the Tibetan Plateau: A review. J. Hydrol. Reg. Stud. 2014, 2, 49–68. [Google Scholar]
- Bibi, S.; Wang, L.; Li, X.; Zhou, J.; Chen, D.; Yao, T. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review. Int. J. Climatol. 2018, 38, e1–e17. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Wu, G.; Xu, B.; Wang, W.; Gao, J.; An, B. Asian water tower change and its impacts. Bull. Chin. Acad. Sci. 2019, 34, 1203–1209. [Google Scholar]
- Kamp, U.; Pan, C. Assessment of the Role of Glaciers in Streamflow from Pamir and Tienshan Mountains: The Role of Glaciers in the Hydrologic Regime of the Amu Darya and Syr Darya Basins; World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Armstrong, R.L.; Rittger, K.; Brodzik, M.J.; Racoviteanu, A.; Barrett, A.P.; Khalsa, S.S.; Raup, B.; Hill, A.F.; Khan, A.L.; Wilson, A.M.; et al. Runoff from glacier ice and seasonal snow in High Asia: Separating melt water sources in river flow. Reg. Environ. Chang. 2019, 19, 1249–1261. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2016, 136, 82–95. [Google Scholar] [CrossRef]
- Tang, Q.; Lan, C.; Su, F.; Liu, X.; Sun, H.; Wang, L.; Leng, G.; Zhang, Y.; Sang, Y.; Fang, H.; et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts (in Chinese). Chi. Sci. Bull. 2019, 64, 2807–2821. [Google Scholar]
- Zhang, F.; Thapa, S.; Immerzeel, W.; Zhang, H.; Lutz, A. Water availability on the Third Pole: A review. Water Secur. 2019, 7, 100033. [Google Scholar] [CrossRef]
- Nie, Y.; Pritchard, H.D.; Liu, Q.; Hennig, T.; Wang, W.; Wang, X.; Liu, S.; Nepal, S.; Samyn, D.; Hweitt, K.; et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2021, 2, 91–106. [Google Scholar] [CrossRef]
- Gao, X.; Ye, B.; Zhang, S.; Qiao, C.; Zhang, X. Glacier runoff variation and its influence on river runoff during 1961–2006 in the Tarim River Basin. Sci. China 2010, 53, 880–891. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Piao, S.; Sun, L.; Ciais, P.; Zhang, Y.; Ma, C.; Gan, R.; He, C. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan–Pamir–North Karakoram. Sci. Rep. 2018, 8, 2–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, H.; Gemmer, M.; Bai, Y.; Su, B.; Mao, W. Trends of streamflow in the Tarim River Basin during the past 50years: Human impact or climate change? J. Hydrol. 2011, 400, 1–9. [Google Scholar] [CrossRef]
- Lan, C.; Zhang, Y.; Gao, Y.; Hao, Z.; Cairang, L. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. J. Hydrol. 2013, 502, 37–52. [Google Scholar]
- Han, P.; Long, D.; Han, Z.; Du, M.; Dai, L.; Hao, X. Improved understanding of snowmelt runoff from the headwaters of China’s Yangtze River using remotely sensed snow products and hydrological modeling. Remote Sens. Environ. 2019, 224, 44–59. [Google Scholar] [CrossRef]
- Liu, S.Z.; Yong, Z.; Yingsong, D.; Yong, J. Estimation of glacier runoff and future trends in the Yangtze River source region. J. Glaciol. 2009, 55, 353–362. [Google Scholar]
- Lan, C.; Li, N.; Liu, Z.; Ding, J.; Liang, L.; Zhang, Y.; Gong, T. Warming and human activities induced changes in the Yarlung Tsangpo basin of the Tibetan plateau and their influences on streamflow. J. Hydrol. Reg. Stud. 2019, 25, 100625. [Google Scholar]
- Wang, Y.; Wang, L.; Zhou, J.; Yao, T.; Yang, W.; Zhong, X.; Liu, R.; Hu, Z.; Luo, L.; Ye, Q.; et al. Vanishing glaciers at southeast Tibetan Plateau have not offset the declining runoff at Yarlung Zangbo. Geophys. Res. Lett. 2021, 48, e2021GL094651. [Google Scholar] [CrossRef]
- Anand, J.; Gosain, A.K.; Khosa, R.; Srinivasan, R. Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. J. Hydrol. Reg. Stud. 2018, 16, 32–53. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; van Beek, L.P.H.; Konz, M.; Shrestha, A.B.; Bierkens, M.F.P. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Change 2012, 110, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; Pellicciotti, F.; Bierkens, M.F.P. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 2013, 6, 742. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; Shean, D.E. Glacier mass change in high mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. 2020, 7, 331. [Google Scholar] [CrossRef] [Green Version]
- Huai, B.; Li, Z.; Wang, S.; Sun, M.; Zhou, P.; Xiao, Y. Remote sensing analysis of glacial changes in the Heihe River Basin in the past 50 years. J. Geolog. Sci. 2014, 69, 365–377. [Google Scholar]
- Defries, R.S.; Los, S.O. Implications of land-cover misclassification for parameter estimates in global land-surface models: An example from the Simple Biosphere Model (SiB2). Photogramm. Eng. Remote Sens. 1999, 65, 1083–1088. [Google Scholar]
- Stumm, D.; Joshi, S.P.; Gurung, T.R.; Silwal, G. Mass balances of Yala and Rikha Samba glaciers, Nepal, from 2000 to 2017. Earth Syst. Sci. Data. 2021, 13, 3791–3818. [Google Scholar] [CrossRef]
- Ageta, Y.; Iida, H.; Watanabe, O. Glaciological studies on Yala Glacier in Langtang Himal. In Glacial Studies in Langtang Valley—Report of the Glacier Boring Project 1981–1982 in the Nepal Himalaya; Higuchi, K., Ed.; Data Center for Glacier Research, Japanese Society of Snow and Ice: Tokyo, Japan, 1984; pp. 41–47. [Google Scholar]
- Higuchi, K. Outline of the Glaciological Expedition of Nepal: Boring Project 1981 and 1982. Bull. Glacier Res. 1984, 2, 1–5. [Google Scholar]
- Takahashi, S.; Motoyama, H.; Kawashima, K.; Morinaga, Y.; Seko, K.; Iida, H.; Kubota, H.; Naven, R.T. Meteorological features in Langtang valley, Nepal Himalayas, 1985–1986. Bull. Glacier Res. 1987, 5, 35–40. [Google Scholar]
- Yamada, T. An outline of Glaciological Expedition of Nepal: Langtang Himal Project 1987–88. Bull. Glacier Res. 1989, 7, 191–193. [Google Scholar]
- Fujita, K.; Takeuchi, Y.; and Seko, K. Glaciological observations of Yala Glacier in Langtang Valley, Nepal Himalaya, 1994 and 1996. Bull. Glacier Res. 1998, 16, 75–81. [Google Scholar]
- Sugiyama, S.; Fukui, K.; Fujita, K.; Tone, K.; Yamaguchi, S. Changes in ice thickness and flow velocity of Yala Glacier, Langtang Himal, Nepal, from 1982 to 2009. Ann. Glaciol. 2013, 54, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Baral, P.; Kayastha, R.B.; Immerzeel, W.W.; Pradhananga, N.S.; Bhattarai, B.C.; Shahi, S.; Galos, S.; Springer, C.; Joshi, S.P.; Mool, P.K. Preliminary results of mass-balance observations of Yala Glacier and analysis of temperature and precipitation gradients in Langtang Valley, Nepal. Ann. Glaciol. 2014, 55, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Acharya, A.; Kayastha, R.B. Mass and Energy Balance Estimation of Yala Glacier (2011–2017), Langtang Valley, Nepal. Water 2019, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Pu, J.; Wang, N. Study on mass balance and sensitivity to climate change in summer on the Qiyi Glacier, Qilian Mountains. Sci. Cold Arid Regions. 2012, 4, 281–287. [Google Scholar]
- Wang, N.; He, J.; Pu, J.; Jiang, X.; Jing, Z. Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years. Chin. Sci. Bull. 2010, 55, 3810–3817. [Google Scholar] [CrossRef]
- Zhu, M.; Yao, T.; Thompson, L.G.; Wang, S.; Yang, W.; Zhao, H. What induces the spatiotemporal variability of glacier mass balance across the Qilian Mountains. Clim. Dyn. 2022, 59, 3555–3577. [Google Scholar] [CrossRef]
- Zemp, M.; Nussbaumer, S.U.; Gärtner-Roer, I.; Bannwart, J.; Paul, F.; Hoelzle, M. (Eds.) WGMS 2021. Global Glacier Change Bulletin No. 4 (2018–2019). ISC(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO; World Glacier Monitoring Service: Zurich, Switzerland, 2021; p. 278. [Google Scholar]
- Zhou, W.; Peng, B.; Shi, J.; Wang, T.; Dhital, Y.P.; Yao, R.; Yu, Y.; Lei, Z.; Zhao, R. Estimating high resolution daily air temperature based on remote sensing products and climate reanalysis datasets over glacierized basins: A case study in the langtang valley, Nepal. Remote Sens. 2017, 9, 959. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Chen, R.; Wang, L.; Wang, Y.; Han, C.; Huai, B. How do GPM and TRMM precipitation products perform in alpine regions? J. Geogr. Sci. 2022, 32, 913–931. [Google Scholar] [CrossRef]
- Running, S.W.; Mu, Q.; Zhao, M.; Moreno, A. MODIS Global Terrestrial Evapotranspiration (ET) Product (MOD16A2/A3 and Year-End Gap-Filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm (for Collection 6); National Aeronautics and Space Administration: Washington, DC, USA, 2019. Available online: https://modis-land.gsfc.nasa.gov/pdf/MOD16UsersGuideV2.022019.pdf (accessed on 19 December 2022).
- Liang, P.; Li, Z.; Zhang, H. Spatial-temporal variation characteristics of snow cover area in Qilian Mountains from 2001 to 2017. Arid Land Geogr. 2019, 42, 56–66. [Google Scholar]
- Hock, R. Glacier melt: A review of processes and their modelling. Progr. Phys. Geogr. 2005, 29, 362–391. [Google Scholar] [CrossRef]
- Moore, R.J. The probability-distributed principle and runoff production at point and basin scales. Hydrol. Sci. J. 1985, 30, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Guo, X.; Yao, T.; Zhu, M.; Wang, Y. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Clim Dyn. 2016, 47, 805–815. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, W.; Yao, T.; Tian, L.; Thompson, L.G.; Zhao, H. The influence of key climate variables on mass balance of Naimona’nyi glacier on a north-facing slope in the western Himalayas. J. Geophys. Res.-Atmos. 2021, 126, e2020JD033956. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Zhou, P. Mass balance reconstruction for Shiyi Glacier in the Qilian Mountains, Northeastern Tibetan Plateau, and its climatic drivers. Clim. Dyn. 2021, 56, 969–984. [Google Scholar] [CrossRef]
- Yang, K.; Ye, B.; Zhou, D. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Change 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Lan, C.; Zhang, Y.; Wang, Q. Climate change on the northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanisms. J. Clim. 2013, 26, 85–109. [Google Scholar]
- Immerzeel, W.W.; Droogers, P.; Jong, S.M.; Bierkens, M. Satellite derived snow and runoff dynamics in the upper Indus river basin. Environ. Sci. 2010, 45, 303–312. [Google Scholar]
Basin | Station | Longitude (°E) | Latitude (°N) | Elevation (m a.s.l) |
---|---|---|---|---|
Kyanjing River | Kyanjing Gompa (ITPCAS) | 85.57 | 28.21 | 3831 |
DHM hydrological station | 85.55 | 28.20 | 3730 | |
Tuole River | Tuole (CMA station) | 98.25 | 38.48 | 3367 |
Binggou hydrological station | 98.00 | 39.60 | 2100 |
Period | Item | Criteria | Configuration 1 | Configuration 2 | Configuration 3 | Configuration 4 |
---|---|---|---|---|---|---|
Calibration | Mass balance | r2 | 0.39 | 0.46 | 0.93 | 0.56 |
RMSE (mm w.e.) | 458.3 | 772.4 | 147.4 | 346.1 | ||
Runoff | r2 | 0.87 | 0.89 | 0.88 | 0.89 | |
NSE | 0.67 | 0.78 | 0.77 | 0.78 | ||
Dv (%) | 13.3 | 5.0 | 5.1 | 3.4 | ||
Snow cover | Relative bias (%) | 23.7 | 11.8 | 19.2 | 7.2 | |
Validation | Mass balance | r2 | 0.73 | 0.76 | 0.87 | 0.89 |
RMSE (mm w.e.) | 545.4 | 516.3 | 505.9 | 428.5 | ||
Runoff | r2 | 0.81 | 0.84 | 0.77 | 0.84 | |
NSE | 0.63 | 0.70 | 0.58 | 0.71 | ||
Dv (%) | 6.24 | 2.68 | 6.29 | 2.64 | ||
Snow cover | Relative bias (%) | 15.1 | 10.13 | 26.65 | 14.27 | |
Whole | Mass balance | r2 | 0.55 | 0.19 | 0.89 | 0.79 |
RMSE (mm w.e.) | 489.1 | 697.6 | 315.9 | 375.6 | ||
Runoff | r2 | 0.83 | 0.87 | 0.84 | 0.87 | |
NSE | 0.74 | 0.75 | 0.71 | 0.75 | ||
Dv (%) | 7.7 | 2.8 | 1.9 | 3.2 | ||
Snow cover | Relative bias (%) | 21.4 | 11.4 | 21.2 | 9.0 |
Period | Item | Criteria | Configuration 1 | Configuration 2 | Configuration 3 | Configuration 4 |
---|---|---|---|---|---|---|
Calibration | Mass balance | r2 | 0.71 | 0.69 | 0.79 | 0.80 |
RMSE (mm w.e.) | 223.6 | 220.8 | 260.3 | 169.1 | ||
Runoff | r2 | 0.40 | 0.62 | 0.11 | −0.03 | |
NSE | 0.15 | 0.39 | −2.85 | −2.51 | ||
Dv (%) | −0.28 | −0.30 | 7.31 | 3.76 | ||
Snow cover | Relative bias (%) | 25.43 | 25.02 | 0.29 | 0.35 | |
Validation | Mass balance | r2 | 0.80 | 0.88 | 0.47 | 0.51 |
RMSE (mm w.e.) | 321.2 | 232.2 | 426.3 | 495.7 | ||
Runoff | r2 | 0.92 | 0.95 | 0.37 | −0.10 | |
NSE | 0.44 | 0.81 | 0.03 | 0.41 | ||
Dv (%) | 0.46 | −3.35 | 4.66 | −1.02 | ||
Snow cover | Relative bias (%) | 27.58 | 0.27 | 0.63 | 0.70 | |
Whole | Mass balance | r2 | 0.76 | 0.78 | 0.59 | 0.62 |
RMSE (mm w.e.) | 266.9 | 235.0 | 336.6 | 339.7 | ||
Runoff | r2 | 0.63 | 0.78 | 0.15 | 0.10 | |
NSE | 0.39 | 0.61 | −1.73 | −1.38 | ||
Dv (%) | 0.06 | 7.2 | 16.37 | 15.70 | ||
Snow cover | Relative bias (%) | 26.11 | 0.27 | 0.40 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, R.; Li, S.; Chen, D. Runoff Response to Climate in Two River Basins Supplied by Small Glacier Meltwater in Southern and Northern Tibetan Plateau. Atmosphere 2023, 14, 711. https://doi.org/10.3390/atmos14040711
Yao R, Li S, Chen D. Runoff Response to Climate in Two River Basins Supplied by Small Glacier Meltwater in Southern and Northern Tibetan Plateau. Atmosphere. 2023; 14(4):711. https://doi.org/10.3390/atmos14040711
Chicago/Turabian StyleYao, Ruzhen, Shenghai Li, and Deliang Chen. 2023. "Runoff Response to Climate in Two River Basins Supplied by Small Glacier Meltwater in Southern and Northern Tibetan Plateau" Atmosphere 14, no. 4: 711. https://doi.org/10.3390/atmos14040711
APA StyleYao, R., Li, S., & Chen, D. (2023). Runoff Response to Climate in Two River Basins Supplied by Small Glacier Meltwater in Southern and Northern Tibetan Plateau. Atmosphere, 14(4), 711. https://doi.org/10.3390/atmos14040711