Assessment of the Sea Surface Salinity Simulation and Projection Surrounding the Asian Waters in the CMIP6 Models
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Observations
2.1.2. CMIP6 Models
2.2. Methods
3. Results
3.1. Assessment of the Simulation Skill of SSS by the CMIP6 Models
3.2. Seasonal Variation of the Spatial Mean Salinity
3.3. Projected SSS Trend under Different Emission Scenarios
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmitt, R. Salinity and the Global Water Cycle. Oceanography 2008, 21, 12. [Google Scholar] [CrossRef]
- Helm, K.P.; Bindoff, N.L.; Church, J.A. Changes in the global hydrological-cycle inferred from ocean salinity. Geophys. Res. Lett. 2010, 37, L18701. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 2010, 23, 4342–4362. [Google Scholar] [CrossRef]
- Skliris, N.; Marsh, R.; Josey, S.A.; Good, S.A.; Liu, C.; Allan, R.P. Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Clim. Dyn. 2014, 43, 709–736. [Google Scholar] [CrossRef]
- Delcroix, T. Observed surface oceanic and atmospheric variability in the tropical Pacific at seasonal and ENSO timescales: A tentative overview. J. Geophys. Res. Ocean. 1998, 103, 18611–18633. [Google Scholar] [CrossRef]
- Ballabrera-poy, J.; Murtugudde, R.; Busalacchi, A.J. On the potential impact of sea surface salinity observations on ENSO predictions. J. Geophys. Res. 2002, 107, 8007. [Google Scholar] [CrossRef]
- Maes, C.; Picaut, J.; Belamari, S. Salinity barrier layer and onset of El Nino in a Pacific coupled model. Geophys. Res. Lett. 2002, 29, 59. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, B.; Zhang, R.-H.; Hu, Z.-Z.; Kumar, A.; Balmaseda, M.A.; Marx, L.; Kinter, J.L., III. Salinity anomaly as a trigger for ENSO events. Sci. Rep. 2014, 4, 6821. [Google Scholar] [CrossRef]
- Qu, T.; Yu, J.-Y. ENSO indices from sea surface salinity observed by Aquarius and Argo. J. Oceanogr. 2014, 70, 367–375. [Google Scholar] [CrossRef]
- Reverdin, G.; Kestenare, E.; Frankignoul, C.; Delcroix, T. Surface salinity in the Atlantic Ocean (30 S–50 N). Prog. Oceanogr. 2007, 73, 311–340. [Google Scholar] [CrossRef]
- Friedman, A.R.; Reverdin, G.; Khodri, M.; Gastineau, G. A new record of Atlantic sea surface salinity from 1896 to 2013 reveals the signatures of climate variability and long-term trends. Geophys. Res. Lett. 2017, 44, 1866–1876. [Google Scholar] [CrossRef]
- Delcroix, T.; Henin, C.; Porte, V.; Arkin, P. Precipitation and sea-surface salinity in the tropical Pacific Ocean. Deep. Sea Res. Part I Oceanogr. Res. Pap. 1996, 43, 1123–1141. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, L.; Boyer, T.P.; Li, C. Halosteric Sea Level Changes during the Argo Era. Water 2017, 9, 484. [Google Scholar] [CrossRef]
- Lee, T.; Lagerloef, G.; Gierach, M.M.; Kao, H.Y.; Yueh, S.; Dohan, K. Aquarius reveals salinity structure of tropical instability waves. Geophys. Res. Lett. 2012, 39, L12610. [Google Scholar] [CrossRef]
- Yin, X.; Boutin, J.; Reverdin, G.; Lee, T.; Arnault, S.; Martin, N. SMOS Sea Surface Salinity signals of tropical instability waves. J. Geophys. Res. Ocean. 2014, 119, 7811–7826. [Google Scholar] [CrossRef]
- Menezes, V.V.; Vianna, M.L.; Phillips, H.E. Aquarius sea surface salinity in the South Indian Ocean: Revealing annual-period planetary waves. J. Geophys. Res. Ocean. 2014, 119, 3883–3908. [Google Scholar] [CrossRef]
- Roemmich, D.; Morris, M.; Young, W.R.; Donguy, J.R. Fresh equatorial jets. J. Phys. Oceanogr. 1994, 24, 540–558. [Google Scholar] [CrossRef]
- Lagerloef, G.; Schmitt, R.; Schanze, J.; Kao, H.-Y. The Ocean and the global water cycle. Oceanography 2010, 23, 82–93. [Google Scholar] [CrossRef]
- Delworth, T.; Manabe, S.; Stouffer, R.J. Interdecadal variations of the thermohaline circulation in a coupled oceanatmosphere model. J. Clim. 1993, 6, 1993–2011. [Google Scholar] [CrossRef]
- Delworth, T.L.; Rosati, A.; Anderson, W.; Adcroft, A.J.; Balaji, V.; Benson, R.; Dixon, K.; Griffies, S.; Lee, H.-C.; Pacanowski, R.C.; et al. Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Clim. 2012, 25, 2755–2781. [Google Scholar] [CrossRef]
- Danabasoglu, G.; Yeager, S.G.; Kwon, Y.-O.; Tribbia, J.J.; Phillips, A.S.; Hurrell, J.W. Variability of the Atlantic meridional overturning circulation in CCSM4. J. Clim. 2012, 25, 5153–5172. [Google Scholar] [CrossRef]
- Kwon, Y.O.; Frankignoul, C. Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3. Clim. Dyn. 2012, 38, 859–876. [Google Scholar] [CrossRef]
- Liu, W.; Fedorov, A.V.; Xie, S.P.; Hu, S.N. Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Sci. Adv. 2020, 6, eaaz4876. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, T.P.; Jin, H.Y.; Gu, F.; Zhang, Y.; Bai, Y.; Ji, Z.; Lu, Y.; Chen, J. Composition of algal pigments in surface freshen layer after ice melt in the central Arctic. Acta Oceanol. Sin. 2017, 36, 122–130. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, L.; Pan, Y.; Tan, Z.; Abraham, J.; Zhang, B.; Zhu, J.; Song, J. How Well Do CMIP6 and CMIP5 Models Simulate the Climatological Seasonal Variations in Ocean Salinity? Adv. Atmos. Sci. 2022, 39, 1650–1672. [Google Scholar] [CrossRef]
- Fathrio, I.; Manda, A.; Iizuka, S.; Kodama, Y.M.; Ishida, S. Evaluation of CMIP5 models on sea surface salinity in the Indian Ocean. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012039. [Google Scholar] [CrossRef]
- Meehl, G.A.; Boer, G.J.; Covey, C.; Latif, M.; Stouffer, R.J. Intercomparison makes for a better climate model. Eos Trans. Am. Geophys. Union 1997, 78, 445–451. [Google Scholar] [CrossRef]
- Meehl, G.A.; Boer, G.J.; Covey, C.; Latif, M.; Stouffer, R.J. The Coupled Model Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc. 2000, 81, 313–318. [Google Scholar] [CrossRef]
- Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchell, J.F.B.; Stouffer, R.J.; Taylor, K.E. The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Inter comparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK, 2013; Volume 9, pp. 741–886. [Google Scholar]
- Eyring, V.; Gillett, N.P. Human influence on the climate system. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; Volume 3, pp. 478–481. [Google Scholar]
- Lin, J.L. The double-ITCZ problem in IPCC AR4 Coupled GCMs: Ocean-atmosphere feedback analysis. J. Clim. 2007, 20, 4497–4525. [Google Scholar] [CrossRef]
- Zhang, R.H.; Busalacchi, A.J. Freshwater flux (FWF) induced oceanic feedback in a hybrid coupled model of the tropical Pacific. J. Clim. 2009, 22, 853–879. [Google Scholar] [CrossRef]
- Zhi, H.; Huang, Y.; Lin, P.; Shi, S.; Dong, M. Interannual variability of the sea surface salinity and its related freshwater flux in the tropical Pacific: A comparison of CMIP5 and CMIP6. Atmos. Ocean. Sci. Lett. 2022, 15, 100190. [Google Scholar] [CrossRef]
- Good, S.A.; Martin, M.J.; Rayner, N.A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objectively analyses with uncertainty estimates. J. Geophys. Res. Ocean. 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Reul, N.; Chapron, B.; Grodsky, S.A.; Guimbard, S.; Kudryavtsev, V.; Foltz, G.R.; Balaguru, K. Satellite observations of the sea surface salinity response to tropical cyclones. Geophys. Res. Lett. 2021, 48, e2020GL091478. [Google Scholar] [CrossRef]
- Olivier, L.; Reverdin, G.; Hasson, A.; Boutin, J. Tropical instability waves in the Atlantic ocean: Investigating the relative role of sea surface salinity and temperature from 2010 to 2018. J. Geophys. Res. Ocean. 2020, 125, e2020JC016641. [Google Scholar] [CrossRef]
- Walker, S.; Mozaria-Luna, H.N.; Kaplan, I.; Petatán-Ramírez, D. Future temperature and salinity in Puget Sound, Washington State, under CMIP6 climate change scenarios. J. Water Clim. Chang. 2022, 13, 124255. [Google Scholar] [CrossRef]
No. | Institute (Country) | Model Name | Resolution (lon × lat) | HIST6 | SSP126 | SSP245 | SSP585 |
---|---|---|---|---|---|---|---|
1 | CSIRO (Australia) | ACCESS-CM2 | 360 × 300 | √ | √ | √ | √ |
ACCESS-ESM1-5 | 360 × 300 | √ | √ | √ | √ | ||
2 | AWI (Germany) | AWI-CM-1-1-MR | 830,305 × 1 | √ | √ | √ | √ |
AWI-ESM-1-1-LR | 126,859 × 1 | √ | × | × | × | ||
3 | BCC (China) | BCC-CSM2-MR | 360 × 232 | √ | √ | √ | √ |
BCC-ESM1 | 360 × 232 | √ | × | × | × | ||
4 | CAMS (China) | CAMS-CSM1-0 | 360 × 200 | √ | √ | √ | √ |
5 | CAS (China) | CAS-ESM2-0 | 360 × 196 | √ | √ | √ | √ |
FGOALS-f3-L | 360 × 218 | √ | √ | × | √ | ||
FGOALS-g3 | 360 × 218 | √ | √ | √ | √ | ||
6 | NCAR (USA) | CESM2 | 320 × 384 | √ | × | × | × |
CESM2-FV2 | 320 × 384 | √ | × | × | × | ||
CESM2-WACCM | 320 × 384 | √ | √ | √ | √ | ||
CESM2-WACCM-FV2 | 320 × 384 | √ | × | × | × | ||
7 | YHU (China) | CIESM | 320 × 384 | √ | √ | √ | √ |
8 | CMCC (Italy) | CMCC-CM2-HR4 | 1442 × 1051 | √ | × | × | × |
CMCC-CM2-SR5 | 362 × 292 | √ | √ | √ | √ | ||
CMCC-ESM2 | 362 × 292 | √ | √ | √ | √ | ||
9 | CCCma (Canada) | CanESM5 | 360 × 291 | √ | √ | √ | √ |
10 | EC-Earth-Consortium (Europe) | EC-Earth3 | 362 × 292 | √ | √ | √ | √ |
EC-Earth3-AerChem | 362 × 292 | √ | × | × | × | ||
EC-Earth3-CC | 362 × 292 | √ | × | √ | √ | ||
EC-Earth3-Veg | 362 × 292 | √ | √ | √ | √ | ||
EC-Earth3-Veg-LR | 362 × 292 | √ | √ | √ | √ | ||
11 | FIO (China) | FIO-ESM-2-0 | 320 × 384 | √ | √ | √ | √ |
12 | NOAA-GFDL (USA) | GFDL-CM4 | 1440 × 1080 | √ | × | √ | √ |
GFDL-ESM4 | 720 × 576 | √ | √ | √ | √ | ||
13 | NASA-GISS (USA) | GISS-E2-1-G | 288 × 180 | √ | × | × | × |
GISS-E2-2-H | 360 × 180 | √ | × | × | × | ||
14 | IPSL (France) | IPSL-CM5A2-INCA | 182 × 149 | √ | √ | × | × |
IPSL-CM6A-LR | 362 × 332 | √ | √ | √ | √ | ||
IPSL-CM6A-LR-INCA | 362 × 332 | √ | × | × | × | ||
15 | MIROC (Japan) | MIROC6 | 360 × 256 | √ | √ | √ | √ |
16 | MPI-M (Germany) | ICON-ESM-LR | 235,403 × 1 | √ | × | × | × |
MPI-ESM-1-2-HAM | 256 × 220 | √ | × | × | × | ||
MPI-ESM1-2-HR | 802 × 404 | √ | √ | √ | √ | ||
MPI-ESM1-2-LR | 256 × 220 | √ | √ | √ | √ | ||
17 | MRI (Japan) | MRI-ESM2-0 | 360 × 363 | √ | √ | √ | √ |
18 | NUIST (China) | NESM3 | 362 × 292 | √ | √ | √ | √ |
19 | SNU (Korea) | SAM0-UNICON | 320 × 384 | √ | × | × | × |
20 | AS-RCEC (China) | TaiESM1 | 320 × 384 | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Pan, H.; Xu, T. Assessment of the Sea Surface Salinity Simulation and Projection Surrounding the Asian Waters in the CMIP6 Models. Atmosphere 2023, 14, 726. https://doi.org/10.3390/atmos14040726
Jin S, Pan H, Xu T. Assessment of the Sea Surface Salinity Simulation and Projection Surrounding the Asian Waters in the CMIP6 Models. Atmosphere. 2023; 14(4):726. https://doi.org/10.3390/atmos14040726
Chicago/Turabian StyleJin, Shanshan, Haidong Pan, and Tengfei Xu. 2023. "Assessment of the Sea Surface Salinity Simulation and Projection Surrounding the Asian Waters in the CMIP6 Models" Atmosphere 14, no. 4: 726. https://doi.org/10.3390/atmos14040726
APA StyleJin, S., Pan, H., & Xu, T. (2023). Assessment of the Sea Surface Salinity Simulation and Projection Surrounding the Asian Waters in the CMIP6 Models. Atmosphere, 14(4), 726. https://doi.org/10.3390/atmos14040726