Verification and Accuracy Analysis of Single-Frequency Occultation Processing Based on the BeiDou Navigation System
Abstract
:1. Introduction
2. Single-Frequency Occultation Data Processing Method Based on BDS
3. Data Sources
4. Verification and Accuracy Analysis of Single-Frequency Occultation Processing
4.1. relTEC Correctness Verification
4.2. Reconstruction Excess Phase Doppler Correctness Verification
4.3. Accuracy Analysis of Refractive Index Products
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kliore, A.; Cain, D.L.; Levy, G.S.; Eshleman, V.R.; Fjeldbo, G.; Drake, F.D. Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere. Science 1965, 149, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Fjeldbo, G.; Kliore, A.J.; Eshleman, V.R. The Neutral Atmosphere of Venus as Studied with the Mariner V Radio Occultation Experiments. Astron. J. 1971, 76, 123. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Fischbach, F.F. a satellite method for pressure and temperature below 24 km. Bull. Am. Meteorol. Soc. 1965, 46, 528–532. [Google Scholar] [CrossRef]
- Yunck, T.P.; Lindal, G.F.; Liu, C.H. The role of GPS in precise Earth observation. In Proceedings of the IEEE PLANS ’88., Position Location and Navigation Symposium, Record. ‘Navigation into the 21st Century’, Orlando, FL, USA, 29 November–2 December 1988; pp. 251–258. [Google Scholar]
- Lim, J.; White, S.M.; Nelson, G.J.; Benz, A.O. Directivity of the radio-emission from the k1 dwarf star Ab-Doradus. Astrophys. J. 1994, 430, 332–341. [Google Scholar] [CrossRef]
- Liao, M.; Healy, S.; Zhang, P. Processing and quality control of FY-3C GNOS data used in numerical weather prediction applications. Atmos. Meas. Tech. 2019, 12, 2679–2692. [Google Scholar] [CrossRef]
- Liao, M. Study on the Retrieval and Error Analysis of Radio Occultation Data on FY Series. Ph.D. Thesis, Chinese Academy of Meteorological Sciences, Beijing, China, 2020. [Google Scholar]
- Hajj, G.A.; Romans, L.J. Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment. Radio Sci. 1998, 33, 175–190. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Zhao, Q.; Shi, C.; Wang, M.; Fans, M.; Wangs, H.; Jiang, K. Extraction of electron density profiles with geostationary satellite-based GPS side lobe occultation signals. GPS Solut. 2019, 23, 110. [Google Scholar] [CrossRef]
- Hu, X.; Wu, X.; Song, S.; Ma, M.; Zhou, W.; Xu, Q.; Li, L.; Xiao, C.; Li, X.; Wang, C.; et al. First Observations of Mars Atmosphere and Ionosphere with Tianwen-1 Radio-Occultation Technique on 5 August 2021. Remote Sens. 2022, 14, 2718. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Ao, C.O.; Iijima, B.A.; Meehan, T.K.; Vergados, P.; Kursinski, E.R.; Schreiner, W.S. An assessment of reprocessed GPS/MET observations spanning 1995–1997. Atmos. Meas. Tech. 2022, 15, 4971–4987. [Google Scholar] [CrossRef]
- Haralambous, H.; Papadopoulos, H. Developing an Electron Density Profiler over Europe Based on Space Radio Occultation Measurements. In Proceedings of the 9th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Paphos, Cyprus, 30 September–2 October 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 172–181. [Google Scholar]
- Poli, P.; Healy, S.B.; Dee, D.P. Assimilation of Global Positioning System radio occultation data in the ECMWF ERA-Interim reanalysis. Q. J. R. Meteorol. Soc. 2010, 136, 1972–1990. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, J.; Sun, X. Real-time kinematic positioning of LEO satellites using a single-frequency GPS receiver. GPS Solut. 2017, 21, 973–984. [Google Scholar] [CrossRef]
- Aragon-Angel, A.; Rovira-Garcia, A.; Arcediano-Garrido, E.; Ibanez-Segura, D. Galileo Ionospheric Correction Algorithm Integration into the Open-Source GNSS Laboratory Tool Suite (gLAB). Remote Sens. 2021, 13, 191. [Google Scholar] [CrossRef]
- Macalalad, E.P.; Tsai, L.-C.; Wu, J.; Liu, C.-H. Application of the TaiWan Ionospheric Model to single-frequency ionospheric delay corrections for GPS positioning. GPS Solut. 2013, 17, 337–346. [Google Scholar] [CrossRef]
- Pavelyev, A.G.; Liou, Y.A.; Matyugov, S.S.; Pavelyev, A.A.; Gubenko, V.N.; Zhang, K.; Kuleshov, Y. Application of the locality principle to radio occultation studies of the Earth's atmosphere and ionosphere. Atmos. Meas. Tech. 2015, 8, 2885–2899. [Google Scholar] [CrossRef]
- Hu, A.; Li, Z.; Carter, B.; Wu, S.; Wang, X.; Norman, R.; Zhang, K. Helmert-VCE-aided fast-WTLS approach for global ionospheric VTEC modelling using data from GNSS, satellite altimetry and radio occultation. J. Geod. 2019, 93, 877–888. [Google Scholar] [CrossRef]
- Gramigna, E.; Parisi, M.; Buccino, D.; Casajus, L.G.; Zannoni, M.; Bourgoin, A.; Tortora, P.; Oudrhiri, K. Analysis of NASA’s DSN Venus Express radio occultation data for year 2014. Adv. Space Res. 2023, 71, 1198–1215. [Google Scholar] [CrossRef]
- Swab, M.; O’Keefe, K.; Skone, S. Single-frequency Ionospheric Profiles from the CanX-2 Nano-Satellite. In Proceedings of the 25th International Technical Meeting of the Satellite-Division of the Institute-of-Navigation, Nashville, TN, USA, 17–21 September 2012; pp. 2007–2021. [Google Scholar]
- Larsen, G.B.; Syndergaard, S.; Hoeg, P.; Sorensen, M.B. Single frequency processing of Orsted GPS radio occultation measurements. GPS Solut. 2005, 9, 144–155. [Google Scholar] [CrossRef]
- Joplin, A.J.; Lightsey, E.G.; Humphreys, T.E. Development and Testing of a Minaturized, Dual-Frequency GPS Receiver for Space Applications. In Proceedings of the International Technical Meeting (ITM) of the Institute-of-Navigation (ION), Newport Beach, CA, USA, 30 January–1 February 2012; pp. 1468–1487. [Google Scholar]
- Unwin, M.; Jales, P.; Duncan, S.; Palfreyman, A.; Gommenginger, C.; Foti, G.; Moore, P.; Guo, J.; Rosello, J.; Inst, N. GNSS Enabling New Capabilities in Space on the TechDemoSat-1 Satellite. In Proceedings of the 30th International Technical Meeting of The Satellite-Division-of-the-Institute-of-Navigation (ION GNSS+), Portland, OR, USA, 25–29 September 2017; pp. 4066–4079. [Google Scholar]
- Yang, R.; Morton, Y.; Inst, N. An adaptive inter-frequency aiding carrier tracking algorithm for the Mountain-top GPS radio occultation signal. In Proceedings of the International Technical Meeting of The Institute-of-Navigation (ION), Reston, VA, USA, 29 January–1 February 2018; pp. 412–419. [Google Scholar]
- Withers, P.; Moore, L.; Cahoy, K.; Beerer, I. How to process radio occultation data: 1. From time series of frequency residuals to vertical profiles of atmospheric and ionospheric properties. Planet. Space Sci. 2014, 101, 77–88. [Google Scholar] [CrossRef]
- Withers, P.; Moore, L. How to Process Radio Occultation Data: 2. From Time Series of Two-Way, Single-Frequency Frequency Residuals to Vertical Profiles of Ionospheric Properties. Radio Sci. 2020, 55, e2019RS007046. [Google Scholar] [CrossRef]
- Twomey, S. (Ed.) Chapter 6—Linear inversion methods. In Developments in Geomathematics; Elsevier: Amsterdam, The Netherlands, 1977; Volume 3, pp. 115–149. [Google Scholar]
- Juárez, M.; Hajj, G.; Kursinski, R.; Mannucci, A. Single Frequency Processing of GPS Radiooccultations. AGU Spring Meet. Abstr. 2001, 25, 3731–3744. [Google Scholar]
- Beyerle, G.; Schmidt, T.; Michalak, G.; Heise, S.; Wickert, J.; Reigber, C. GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Wang, S.Z.; Zhu, G.W.; Bai, W.H.; Liu, C.L.; Sun, Y.Q.; Du, Q.F.; Wang, X.Y.; Meng, X.G.; Yang, G.L.; Yang, Z.D.; et al. For the first time fengyun3 C satellite-global navigation satellite system occultation sounder achieved spaceborne Bei Dou system radio occultation. Acta Phys. Sin. 2015, 64, 089301. [Google Scholar] [CrossRef]
- Yang, G.L.; Sun, Y.Q.; Bai, W.H.; Zhang, X.X.; Yang, Z.D.; Zhang, P.; Tan, G.Y. Beidou Navigation Satellite System Sounding of the Ionosphere from FY-3C GNOS:Preliminary Results. Chin. J. Space Sci. 2019, 39, 36. [Google Scholar] [CrossRef]
- Bai, W.H.; Sun, Y.Q.; Liu, Z.Y.; Du, Q.F.; Liu, L.J.; Li, W.; Wang, X.Y. A Method for Tropopause Parameter Inversion Using GNSS Atmospheric Occultation Bending Angle Data. CN202010185847.7, 2020. [Google Scholar]
- Du, Q.F.; Sun, Y.Q.; Bai, W.H.; Wang, X.Y.; Wang, D.W.; Meng, X.G.; Cai, Y.R.; Liu, C.L.; Wu, D.; Wu, C.J.; et al. The next generation GNOS instrument for fy-3 meteorological satellites. In Proceedings of the 36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 381–383. [Google Scholar]
- Tripathi, K.R.; Choudhary, R.K.; Jayalal, L. On the estimation of frequency residuals in a radio occultation experiment. Mon. Not. R. Astron. Soc. 2022, 517, 776–786. [Google Scholar] [CrossRef]
- Wang, X.; Xu, C.; Peng, W.; Zhang, Q.; Kong, J.; Zhang, L. Method for refining global ionosphere model by using occultation data. CN202110288007.8, 2021. [Google Scholar]
- Prol, F.d.S.; Camargo, P.d.O.; Hernandez-Pajares, M.; de Assis Honorato Muella, M.T. A New Method for Ionospheric Tomography and Its Assessment by Ionosonde Electron Density, GPS TEC, and Single-Frequency PPP. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2571–2582. [Google Scholar] [CrossRef]
- Tripathi, K.R.; Choudhary, R.K. Quantification of Errors in the Planetary Atmospheric Profiles Derived From Radio Occultation Measurements. Earth Space Sci. 2022, 9, e2022EA002326. [Google Scholar] [CrossRef]
- Kusza, K. Using radio waves to study planetary atmospheres. IEEE Potentials 2004, 23, 39–40. [Google Scholar] [CrossRef]
- Mousa, A.; Tsuda, T. Abel inversion for deriving refractivity profile from down-looking GPS radio occultation: Simulation analysis. Arab. J. Geosci. 2012, 5, 781–787. [Google Scholar] [CrossRef]
- Healy, S.B.; Haase, J.; Lesne, O. Abel transform inversion of radio occultation measurements made with a receiver inside the Earth's atmosphere. Ann. Geophys. 2002, 20, 1253–1256. [Google Scholar] [CrossRef]
- Gowtam, V.S.; Ram, S.T.; Ankita, M. An aided Abel inversion technique assisted by artificial neural network-based background ionospheric model for near real-time correction of FORMOSAT-7/COSMIC-2 data. Adv. Space Res. 2021, 68, 2865–2875. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Du, Q.; Yang, M.; Tian, H.; Sun, Y.; Meng, X.; Bai, W.; Wang, X.; Tan, G.; Hu, P. Verification and Accuracy Analysis of Single-Frequency Occultation Processing Based on the BeiDou Navigation System. Atmosphere 2023, 14, 742. https://doi.org/10.3390/atmos14040742
Li R, Du Q, Yang M, Tian H, Sun Y, Meng X, Bai W, Wang X, Tan G, Hu P. Verification and Accuracy Analysis of Single-Frequency Occultation Processing Based on the BeiDou Navigation System. Atmosphere. 2023; 14(4):742. https://doi.org/10.3390/atmos14040742
Chicago/Turabian StyleLi, Ruimin, Qifei Du, Ming Yang, Haoran Tian, Yueqiang Sun, Xiangguang Meng, Weihua Bai, Xianyi Wang, Guangyuan Tan, and Peng Hu. 2023. "Verification and Accuracy Analysis of Single-Frequency Occultation Processing Based on the BeiDou Navigation System" Atmosphere 14, no. 4: 742. https://doi.org/10.3390/atmos14040742
APA StyleLi, R., Du, Q., Yang, M., Tian, H., Sun, Y., Meng, X., Bai, W., Wang, X., Tan, G., & Hu, P. (2023). Verification and Accuracy Analysis of Single-Frequency Occultation Processing Based on the BeiDou Navigation System. Atmosphere, 14(4), 742. https://doi.org/10.3390/atmos14040742