Past and Future Responses of Soil Water to Climate Change in Tropical and Subtropical Rainforest Systems in South America
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Past Meteorological Information—Climatic Research Unit Dataset (CRU)
2.3. Weather Database of the Future—CMIP6
2.4. Remote Sensing Data (Fire Foci)
2.5. Volumetric Soil Moisture (VSM) and Autoregressive Integrated Moving Average Model—ARIMA
2.6. Statistical Analysis and Correlation Analysis between Variables
3. Results
3.1. Climate of the “Tropical Large Leaf Forest” Biome (Biome 1)
3.2. VSM Simulation
3.3. Analysis of Observed VSM and Climate Data for 2007
3.4. Weather Simulation (SSPs)
3.5. Future Simulation and VSM Past–Future Differences
3.6. Correlation between the Observed and Simulated VSM Data and ARIMA Analysis
3.7. Correlation Analysis
3.8. Regional Analysis of Acre and Rio de Janeiro
4. Discussion
4.1. Climate of the “Tropical Large Leaf Forest” Biome and VSM
4.2. VSM Analysis
4.3. Analysis of 2007 VSM Observed Data
4.4. Changes in the Behavior of Meteorological Systems
4.5. ARIMA Modeling
4.6. Local Analysis Acre and Rio de Janeiro
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerra, A.; Reis, L.K.; Borges, F.L.G.; Ojeda, P.T.A.; Pineda, D.A.M.; Miranda, C.O.; Maidana, D.P.F.L.; dos Santos, T.M.R.; Shibuya, P.S.; Marques, M.C.M.; et al. Ecological restoration in Brazilian biomes: Identifying advances and gaps. For. Ecol. Manag. 2020, 458, 117802. [Google Scholar] [CrossRef]
- Stoof, C.R.; Wesseling, J.G.; Ritsema, C.J. Effects of fire and ash on soil water retention. Geoderma 2010, 159, 276–285. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [PubMed]
- Pádua, J.A. A Mata Atlântica e a Floresta Amazônica na construção do território brasileiro: Estabelecendo um marco de análise. Rev. Hist. Reg. 2015, 20, 232–251. [Google Scholar] [CrossRef]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. Lond B Biol. Sci. 2020, 375, 20190104. [Google Scholar] [CrossRef] [PubMed]
- Delgado, R.C.; de Santana, R.S.; Gelsleichter, Y.A.; Pereira, M.G. Degradation of South American biomes: What to expect for the future? Environ. Impact Assess. Rev. 2022, 96, 106815. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; de Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture productusing ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Li, B.; Biswas, A.; Wang, Y.; Li, Z. Identifying the dominant effects of climate and land use change on soil water balance in deep loessial vadose zone. Agric. Water Manag. 2021, 245, 106637. [Google Scholar] [CrossRef]
- Di Bella, C.M.; Jobbágy, E.G.; Paruelo, J.M.; Pinnock, S. Continental fire density patterns in South America. Glob. Ecol. Biogeogr. 2006, 15, 192–199. [Google Scholar] [CrossRef]
- Giorgis, M.A.; Zeballos, S.R.; Carbone, L.; Zimmermann, H.; von Wehrden, H.; Aguilar, R.; Ferreras, A.E.; Tecco, P.A.; Kowaljow, E.; Barri, F.; et al. A review of fire effects across South American ecosystems: The role of climate and time since fire. Fire Ecol. 2021, 17, 11. [Google Scholar] [CrossRef]
- Withey, K.; Berenguer, E.; Palmeira, A.F.; Espírito-Santo, F.D.B.; Lennox, G.D.; Silva, C.V.J.; Aragão, L.E.O.C.; Ferreira, J.; França, F.; Malhi, Y.; et al. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170312. [Google Scholar] [CrossRef] [PubMed]
- Lian, T.; Chen, D.; Ying, J.; Huang, P.; Tang, Y. Tropical Pacific trends under global warming: El Niño-like or La Niña-like? Natl. Sci. Rev. 2018, 5, 810–812. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, X.; Tung, K.K. ENSO diversity and the recent appearance of Central Pacific ENSO. Clim. Dyn. 2020, 54, 413–433. [Google Scholar] [CrossRef]
- Valverde, M.C.; Marengo, J.A. Mudanças na circulação atmosférica sobre a América do Sul para cenários futuros de clima projetados pelos modelos globais do IPCC AR4. Rev. Bras. Meteorol. 2010, 25, 125–145. [Google Scholar] [CrossRef]
- Saito, S.M.; de Dias, M.C.A.; dos Alvalá, R.C.S.; Stenner, C.; Franco, C.; Ribeiro, J.V.M.; de Souza, P.A.; de Santana, R.A.S.M. População urbana exposta aos riscos de deslizamentos, inundações e enxurradas no Brasil. Soc. Nat. 2019, 31, 1–25. [Google Scholar] [CrossRef]
- Ferreira, A.G.; da Mello, N.G.S. Principais sistemas atmosféricos atuantes sobre a região nordeste do brasil e a influência dos oceanos pacífico e atlântico no clima da região. Rev. Bras. Meteorol. 2005, 1, 15–28. [Google Scholar] [CrossRef]
- Santos, R.O.; Delgado, R.C.; Vilanova, R.S.; de Santana, R.O.; de Andrade, C.F.; Teodoro, P.E.; Silva Junior, C.A.; Capristo-Silva, G.F.; Lima, M. NMDI application to monitor the vegetation of the Atlantic Forest biome, Brazil. Weather Clim. Extrem. 2021, 33, 100329. [Google Scholar] [CrossRef]
- Dos Santos, H.G.; Jacomine, P.K.T.; Dos Anjos, L.H.C.; De Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; De Almeida, J.A.; De Araujo Filho, J.C.; De Oliveira, J.B.; Cunha, T.J.F. SOLOS, Embrapa. In Sistema Brasileiro de Classificação de Solos, 5th ed.; rev. e ampl.; Embrapa: Brasília, DF, Brasil, 2018; pp. 82–105. [Google Scholar]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land application. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Copernicus Climate Data Store. Temperature and Precipitation Gridded Data for Global and Regional Domains Derived from In-Situ and Satellite Observations. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-global-and-regional?tab=overview (accessed on 20 July 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 20 July 2022).
- Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Butchart, N.; Anstey, J.A.; Kawatani, Y.; Osprey, S.M.; Richter, J.H.; Wu, T. QBO changes in CMIP6 climate projections. Geophys. Res. Lett. 2020, 47, e2019GL086903. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef]
- Copernicus Climate Data Store. CMIP6 Climate Projections. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6?tab=overview (accessed on 20 July 2022).
- Fire Information for Resource Management System. Available online: https://firms.modaps.eosdis.nasa.gov/ (accessed on 19 July 2022).
- Copernicus Climate Data Store. Soil Moisture Gridded Data from 1978 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-soil-moisture?tab=overview (accessed on 20 July 2022).
- Mann, H.B. Nonparametric Tests Against Trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, K. Thin-film peeling-the elastic term. J. Phys. Appl. Phys. 1975, 8, 1449. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Robson, A. Detecting Trend and Other Changes in Hydrological Data; WMO/TD-No. 1013; World Climate Program Data and Monitoring: Geneva, Switzerland, 2000; Volume 45, p. 158. [Google Scholar]
- Campos, J.; Chaves, H. Trends and Variabilities in the Historical Series of Monthly and Annual Precipitation in Cerrado Biome in the Period 1977–2010. Rev. Bras. Meteorol. 2020, 35, 157–169. [Google Scholar] [CrossRef]
- Willmott, C.J. On The Validation Of Models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- El Niño and La Niña Years and Intensities. Available online: https://ggweather.com/enso/oni.htm (accessed on 15 August 2022).
- Climanálise, V. 22, N. 10–12. 2007. Available online: http://climanalise.cptec.inpe.br/~rclimanl/boletim/# (accessed on 27 July 2022).
- Morellato, L.P.C.; Haddad, C.F. Introduction: The Brazilian Atlantic Forest 1. Biotropica 2001, 32, 786–792. [Google Scholar] [CrossRef]
- Rodrigues, A.F.; Mello, C.R.D.; Terra, M.D.C.N.S.; Beskow, S. Water balance of an Atlantic forest remnant under a prolonged drought period. Ciência E Agrotecnol. 2021, 45, e008421. [Google Scholar] [CrossRef]
- Leite-Filho, A.T.; Soares-Filho, B.S.; Davis, J.L.; Abrahão, G.M.; Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 2021, 12, 2591. [Google Scholar] [CrossRef]
- Mu, Y.; Jones, C. An observational analysis of precipitation and deforestation age in the Brazilian Legal Amazon. Atmos. Res. 2022, 271, 106122. [Google Scholar] [CrossRef]
- Vilanova, R.S.; Delgado, R.C.; da Silva Abel, E.L.; Teodoro, P.E.; Silva Junior, C.A.; Wanderley, H.S.; Capristo-Silva, G.F. Past and future assessment of vegetation activity for the State of Amazonas-Brazil. Remote Sens. Appl. Soc. Environ. 2020, 17, 100278. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Poveda, G.; Ham, Y.G.; Santoso, A.; Ng, B.; et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Costa, M.H.; Foley, J.A. Trends in the hydrologic cycle of the Amazon basin. J. Geophys. Res. Atmos. 1999, 104, 14189–14198. [Google Scholar] [CrossRef]
- Borma, L.S.; Costa, M.H.; da Rocha, H.R.; Arieira, J.; Nascimento, N.C.C.; Jaramillo-Giraldo, C.; Ambrosio, G.; Carneiro, R.G.; Venzon, M.; Neto, A.F.; et al. Beyond carbon: The contributions of South American tropical humid and subhumid forests to ecosystem services. Rev. Geophys. 2022, 60, e2021RG000766. [Google Scholar] [CrossRef]
- Chagas, V.B.; Chaffe, P.L.; Blöschl, G. Climate and land management accelerate the Brazilian water cycle. Nat. Commun. 2022, 13, 5136. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Riley, W.J.; Xue, Y.; Nobre, C.A.; Lovejoy, T.E.; Jia, G. Deforestation triggering irreversible transition in Amazon hydrological cycle. Environ. Res. Lett. 2022, 17, 034037. [Google Scholar] [CrossRef]
- Davidson, E.A.; de Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef]
- Gallero, M.C.; Miraglia, M. Transformaciones ambientales de la Selva Paranaense (relicto de la Mata Atlántica) en la triple frontera de Brasil-Argentina-Paraguay entre 1810 y 2020. HALAC Rev. Solcha 2021, 11, 222–252. [Google Scholar] [CrossRef]
- Lourenço-de-Moraes, R.; Lansac-Toha, F.M.; Schwind, L.T.F.; Arrieira, R.L.; Rosa, R.R.; Terribile, L.C.; Lemes, P.; Fernando Rangel, T.; Diniz-Filho, J.A.F.; Bastos, R.P.; et al. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Sci. Rep. 2019, 9, 8523. [Google Scholar] [CrossRef]
- Macedo, T.M.; da Costa, W.S.; das Neves Brandes, A.F.; Valladares, F.; Barros, C.F. Diversity of growth responses to recent droughts reveals the capacity of Atlantic Forest trees to cope well with current climatic variability. For. Ecol. Manag. 2021, 480, 118656. [Google Scholar] [CrossRef]
- Marengo, J.A.; Tomasella, J.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A. The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett. 2011, 38, L12703. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; Schrier, G.V.D. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liesenfeld, M.V.A.; Vieira, G.; de Miranda, I.P.A. Ecologia do fogo e o impacto na vegetação da Amazônia. Pesqui. Florest. Bras. 2017, 36, 505. [Google Scholar] [CrossRef]
- Marin, F.R.; Zanon, A.J.; Monzon, J.P.; Andrade, J.F.; Silva, E.H.; Richter, G.L.; Antolin, L.A.S.; Ribeiro, B.S.M.R.; Ribas, G.G.; Battisti, R.; et al. Protecting the Amazon forest and reducing global warming via agricultural intensification. Nat. Sustain. 2022, 5, 1018–1026. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Kulmann-Leal, B.; Kaminski, V.L.; Valverde-Villegas, J.M.; Veiga, A.B.G.; Spilki, F.R.; Fearnside, P.M.; Caesar, L.; Giatti, L.L.; Wallau, G.L.; et al. Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. An. Acad. Bras. Ciênc. 2020, 92, e20191375. [Google Scholar] [CrossRef]
- Fellows, M.; Paye, V.; Alencar, A.; Nicácio, M.; Castro, I.; Coelho, M.E.; Basta, P.C. Under-Reporting of COVID-19 Cases Among Indigenous Peoples in Brazil: A New Expression of Old Inequalities. Front. Psychiatry 2021, 12, 352. [Google Scholar] [CrossRef]
- Vale, M.M.; Berenguer, E.; de Menezes, M.A.; de Castro, E.B.V.; de Siqueira, L.P.; Rita de Cássia, Q.P. The COVID-19 pandemic as an opportunity to weaken environmental protection in Brazil. Biol. Conserv. 2021, 255, 108994. [Google Scholar] [CrossRef]
- Syed, F.; Ullah, A. Estimation of economic benefits associated with the reduction in the CO2 emission due to COVID-19. Environ. Chall. 2021, 3, 100069. [Google Scholar] [CrossRef]
- Sampaio, G.; Nobre, C.; Costa, M.H.; Satyamurty, P.; Soares-Filho, B.S.; Cardoso, M. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett. 2007, 34, 1–7. [Google Scholar] [CrossRef]
- de Paula, M.D.; Groeneveld, J.; Huth, A. Tropical forest degradation and recovery in fragmented landscapes—Simulating changes in tree community, forest hydrology and carbon balance. GECCO 2015, 3, 664–677. [Google Scholar] [CrossRef]
- Taktikou, E.; Bourazanis, G.; Papaioannou, G.; Kerkides, P. Prediction of soil moisture from remote sensing data. Procedia Eng. 2016, 162, 309–316. [Google Scholar] [CrossRef]
- Marques, M.C.; Trindade, W.; Bohn, A.; Grelle, C.E. The Southern Atlantic Forest: Use, Degradation, and Perspectives for Conservation. In The Atlantic Forest: An Introduction to the Megadiverse Forest of South America. The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-Diverse Forest; Marques, M.C., Grelle, C.E., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 91–111. [Google Scholar]
- McPhaden, M.J. Evolution of the 2006–2007 El Niño: The role of intraseasonal to interannual time scale dynamics. Adv. Geosci. 2008, 14, 219–230. [Google Scholar] [CrossRef]
- Moon, W.; Kim, B.M.; Yang, G.H.; Wettlaufer, J.S. Wavier jet streams driven by zonally asymmetric surface thermal forcing. PNAS 2022, 119, e2200890119. [Google Scholar] [CrossRef] [PubMed]
- Segura, H.; Espinoza, J.C.; Junquas, C.; Lebel, T.; Vuille, M.; Garreaud, R. Recent changes in the precipitation-driving processes over the southern tropical Andes/western Amazon. Clim. Dyn. 2020, 54, 2613–2631. [Google Scholar] [CrossRef]
- Zilli, M.T.; Carvalho, L.M.; Lintner, B.R. The poleward shift of South Atlantic Convergence Zone in recent decades. Clim. Dyn. 2019, 52, 2545–2563. [Google Scholar] [CrossRef]
- de Jesus, C.S.L.; Delgado, R.C.; Wanderley, H.S.; Teodoro, P.E.; Pereira, M.G.; Lima, M.; de Rodrigues, R.Á.; da Silva Junior, C.A. Fire risk associated with landscape changes, climatic events and remote sensing in the Atlantic Forest using ARIMA model. Remote Sens. Appl. Soc. Environ. 2022, 26, 100761. [Google Scholar] [CrossRef]
- Farinosi, F.; Arias, M.E.; Lee, E.; Longo, M.; Pereira, F.F.; Livino, A.; Moorcroft, P.R.; Briscoe, J. Future climate and land use change impacts on river flows in the Tapajós Basin in the Brazilian Amazon. Earth’s Future 2019, 7, 993–1017. [Google Scholar] [CrossRef]
- Baker, J.C.A.; Garcia-Carreras, L.; Buermann, W.; De Souza, D.C.; Marsham, J.H.; Kubota, P.Y.; Kubota, P.Y.; Gloor, M.; Coelho, C.A.S.; Spracklen, D.V. Robust Amazon precipitation projections in climate models that capture realistic land–atmosphere interactions. Environ. Res. Lett. 2021, 16, 074002. [Google Scholar] [CrossRef]
- Yang, J.; Tian, H.; Pan, S.; Chen, G.; Zhang, B.; Dangal, S. Amazon drought and forest response: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Glob. Chang. Biol. 2018, 24, 1919–1934. [Google Scholar] [CrossRef]
- Neelin, J.D.; Battisti, D.S.; Hirst, A.C.; Jin, F.F.; Wakata, Y.; Yamagata, T.; Zebiak, S.E. ENSO theory. J. Geophys. Res. Oceans 1998, 103, 14261–14290. [Google Scholar] [CrossRef]
- Wolter, K.; Timlin, M.S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext). Int. J. Climatol. 2011, 31, 1074–1087. [Google Scholar] [CrossRef]
- Alencar, A.; Nepstad, D.; Diaz, M.C.V. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: Area burned and committed carbon emissions. EI 2006, 10, 1–17. [Google Scholar] [CrossRef]
- Towner, J.; Ficchí, A.; Cloke, H.L.; Bazo, J.; Coughlan de Perez, E.; Stephens, E.M. Influence of ENSO and tropical Atlantic climate variability on flood characteristics in the Amazon basin. Hydrol. Earth Syst. Sci. 2021, 25, 3875–3895. [Google Scholar] [CrossRef]
- Lam, H.C.Y.; Haines, A.; McGregor, G.; Chan, E.Y.Y.; Hajat, S. Time-series study of associations between rates of people affected by disasters and the El Niño Southern Oscillation (ENSO) cycle. Int. J. Environ. Res. Public Health 2019, 16, 3146. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.L.F.; Delgado, R.C.; Teodoro, P.E.; Pereira, M.G.; Correia, T.P.; de Mendonça, B.A.F.; Rodrigues, R.D.A. Occurrence of fire foci under different land uses in the State of Amazonas during the 2005 drought. Environ. Dev. Sustain. 2019, 21, 2707–2720. [Google Scholar] [CrossRef]
- Steingraber, R.; Kanoppa, A.P.; Caetano, J.F. Environmental services as an endogenous development strategy: An alternative to deforestation in the state of Acre, Brazil. Acta Sci. Hum. Soc. Sci. 2018, 40, e36473. [Google Scholar] [CrossRef]
- Nascimento, E.D.S.; Silva, S.S.D.; Bordignon, L.; Melo, A.W.F.D.; Brandao, A., Jr.; Souza, C.M., Jr.; Silva Junior, C.H. Roads in the Southwestern Amazon, State of Acre, between 2007 and 2019. Land 2021, 10, 106. [Google Scholar] [CrossRef]
- Koskimäki, T.; Eklund, J.; Moulatlet, G.M.; Tuomisto, H. Impact of individual protected areas on deforestation and carbon emissions in Acre, Brazil. Environ. Conserv. 2021, 48, 217–224. [Google Scholar] [CrossRef]
- Lima, M.; Santana, D.C.; Junior, I.C.M.; Costa, P.M.C.D.; Oliveira, P.P.G.D.; Azevedo, R.P.D.; Silva, R.D.S.; Marinho, U.D.F.; Silva, V.D.; Souza, J.A.A.D.; et al. The “New Transamazonian Highway”: BR-319 and Its Current Environmental Degradation. Sustainability 2022, 14, 823. [Google Scholar] [CrossRef]
- da Silva Júnior, L.A.S.; Delgado, R.C.; Pereira, M.G.; Teodoro, P.E.; da Silva Junior, C.A. Fire dynamics in extreme climatic events in western amazon. Environ. Dev. 2019, 32, 100450. [Google Scholar] [CrossRef]
- Bernini, T.D.A.; Pereira, M.G.; Fontana, A.; Anjos, L.H.C.D.; Calderano, S.B.; Wadt, P.G.S.; Moraes, A.G.D.L.; Santos, L.L.D. Taxonomia de solos desenvolvidos sobre depósitos sedimentares da Formação Solimões no Estado do Acre. Bragantia 2013, 72, 71–80. [Google Scholar] [CrossRef]
- Shinzato, E.; Teixeira, W.G.; Dantas, M.E. Principais classes de solos. In Geodiversidade Do Estado Do Acre; Adamy, A., Ed.; CPRM: Porto Velho, Brasil, 2015; pp. 61–69. [Google Scholar]
- Teixeira, G.M.; Figueiredo, P.H.A.; Salemi, L.F.; Ferraz, S.F.B.; Ranzini, M.; Arcova, F.C.S.; de Cicco, V.; Rizzi, N.E. Regeneration of tropical montane cloud forests increases water yield in the Brazilian Atlantic Forest. Ecohydrology 2021, 14, e2298. [Google Scholar] [CrossRef]
- Mendes, M.S.; Latawiec, A.E.; Sansevero, J.B.B.; Crouzeilles, R.; de Moraes, L.F.D.; Castro, A.; Alves-Pinto, H.N.; Brancalion, P.H.S.; Rodrigues, R.R.; Chazdon, R.L.; et al. Look down—There is a gap—The need to include soil data in Atlantic Forest restoration. Restor. Ecol. 2018, 27, 361–370. [Google Scholar] [CrossRef]
El Niño | La Niña | ||||
---|---|---|---|---|---|
Weak—11 | Moderate—2 | Very Strong—1 | Weak—6 | Moderate—3 | Strong—2 |
2004–2005 | 2002–2003 | 2015–2016 | 2000–2001 | 2011–2012 | 2007–2008 |
2006–2007 | 2009–2010 | 2005–2006 | 2020–2021 | 2010–2011 | |
2014–2015 | 2008–2009 | 2021–2022 | |||
2018–2019 | 2016–2017 | ||||
2017–2018 |
Year | R | EPE (m3 m−3) | D |
---|---|---|---|
2001 | 0.9595 | 0.0053 | 0.9995 |
2002 | 0.9315 | 0.0070 | 0.9995 |
2003 | 0.9322 | 0.0073 | 0.9990 |
2004 | 0.9256 | 0.0071 | 0.9994 |
2005 | 0.9297 | 0.0063 | 0.9997 |
2006 | 0.8838 | 0.0089 | 0.9994 |
2007 | 0.9738 | 0.0047 | 0.9996 |
2008 | 0.9900 | 0.0027 | 0.9999 |
2009 | 0.9753 | 0.0043 | 0.9995 |
2010 | 0.9595 | 0.0056 | 0.9998 |
2011 | 0.9780 | 0.0043 | 0.9998 |
2012 | 0.9891 | 0.0027 | 0.9998 |
2013 | 0.8999 | 0.0072 | 0.9996 |
2014 | 0.8993 | 0.0048 | 0.9992 |
2015 | 0.9488 | 0.0044 | 0.9996 |
2016 | 0.9127 | 0.0066 | 0.9997 |
2017 | 0.9474 | 0.0039 | 0.9990 |
2018 | 0.9718 | 0.0046 | 0.9996 |
2019 | 0.9577 | 0.0070 | 0.9997 |
2020 | 0.9502 | 0.0060 | 0.9996 |
2021 | 0.8830 | 0.0097 | 0.9994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arévalo, S.M.M.; Delgado, R.C.; Lindemann, D.d.S.; Gelsleichter, Y.A.; Pereira, M.G.; Rodrigues, R.d.Á.; Justino, F.B.; Wanderley, H.S.; Zonta, E.; Santana, R.O.d.; et al. Past and Future Responses of Soil Water to Climate Change in Tropical and Subtropical Rainforest Systems in South America. Atmosphere 2023, 14, 755. https://doi.org/10.3390/atmos14040755
Arévalo SMM, Delgado RC, Lindemann DdS, Gelsleichter YA, Pereira MG, Rodrigues RdÁ, Justino FB, Wanderley HS, Zonta E, Santana ROd, et al. Past and Future Responses of Soil Water to Climate Change in Tropical and Subtropical Rainforest Systems in South America. Atmosphere. 2023; 14(4):755. https://doi.org/10.3390/atmos14040755
Chicago/Turabian StyleArévalo, Santiago M. Márquez, Rafael Coll Delgado, Douglas da Silva Lindemann, Yuri A. Gelsleichter, Marcos Gervasio Pereira, Rafael de Ávila Rodrigues, Flávio Barbosa Justino, Henderson Silva Wanderley, Everaldo Zonta, Romário Oliveira de Santana, and et al. 2023. "Past and Future Responses of Soil Water to Climate Change in Tropical and Subtropical Rainforest Systems in South America" Atmosphere 14, no. 4: 755. https://doi.org/10.3390/atmos14040755
APA StyleArévalo, S. M. M., Delgado, R. C., Lindemann, D. d. S., Gelsleichter, Y. A., Pereira, M. G., Rodrigues, R. d. Á., Justino, F. B., Wanderley, H. S., Zonta, E., Santana, R. O. d., & de Souza, R. S. (2023). Past and Future Responses of Soil Water to Climate Change in Tropical and Subtropical Rainforest Systems in South America. Atmosphere, 14(4), 755. https://doi.org/10.3390/atmos14040755