Projections of Cause-Specific Mortality and Demographic Changes under Climate Change in the Lisbon Metropolitan Area: A Modelling Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Data Sources
2.2.1. Mortality Data
2.2.2. Temperature Projections
2.2.3. Population Data
2.3. Data Analysis
2.3.1. Estimation of Temperature–Mortality Relationships
2.3.2. Projections of Exposure–Response Relationships and Attributable Mortality Rates
3. Results
3.1. Exploratory Data Analysis
3.2. Temperature–Mortality Associations in Historical and Future Periods
3.2.1. Historical Period
3.2.2. Future Period
3.3. Temperature-Attributable Mortality
3.4. Net Differences in Excess Temperature-Related Mortality
3.5. Model Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Attributable fraction | AF |
Attributable number | AN |
Cerebrovascular disease | CVD |
Ischaemic heart disease | HD |
Diabetes mellitus | DM |
Respiratory diseases | RD |
Lisbon Metropolitan Area | LMA |
Distributed lag non-linear model | DLNM |
Weather Research and Forecasting model | WRF |
Exposure–response function | ERF |
Relative risk | RR |
Interquartile range | IQR |
Minimum mortality temperature | MMT |
Standard deviation | SD |
References
- Achebak, H.; Devolder, D.; Ballester, J. Trends in temperature-related age-specific and sex-specific mortality from cardiovascular diseases in Spain: A national time-series analysis. Lancet Planet. Health 2019, 3, e297–e306. [Google Scholar] [CrossRef] [PubMed]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.S.; Brown, I.; Camilloni, A.; Diedhiou, R.; Djalante, K.L.; Ebi, F.; Engelbrecht, J.; et al. Impacts of 1.5 °C global warming on natural and human systems. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai Pörtner, H.-O., Eds.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Vicedo-Cabrera, A.M.; Sera, F.; Guo, Y.; Chung, Y.; Arbuthnott, K.; Tong, S.; Tobias, A.; Lavigne, E.; de Sousa Zanotti Stagliorio Coelho, M.; Hilario Nascimento Saldiva, P.; et al. A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate. Environ. Int. 2018, 111, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef] [PubMed]
- WHO. Quantitative Risk Assessment of the Effects of Climate Change on Selected Causes of Death, 2030s and 2050s; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Guo, Y.; Gasparrini, A.; Li, S.; Sera, F.; Vicedo-Cabrera, A.M.; de Sousa Zanotti Stagliorio Coelho, M.; Saldiva, P.H.N.; Lavigne, E.; Tawatsupa, B.; Punnasiri, K.; et al. Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study. PLOS Med. 2018, 15, e1002629. [Google Scholar] [CrossRef]
- Li, T.; Horton, R.M.; Kinney, P. Future projections of seasonal patterns in temperature-related deaths for Manhattan. Nat. Clim. Chang. 2013, 3, 717–721. [Google Scholar] [CrossRef]
- Martínez-Solanas, È.; Quijal-Zamorano, M.; Achebak, H.; Petrova, D.; Robine, J.M.; Herrmann, F.R.; Rodó, X.; Ballester, J. Projections of temperature-attributable mortality in Europe: A time series analysis of 147 contiguous regions in 16 countries. Lancet Planet. Health 2021, 5, e446–e454. [Google Scholar] [CrossRef]
- Smith, K.R.; Woodward, A.; Campbell-Lendrum, D.; Chadee, D.D.; Honda, Y.; Liu, Q.; Olwoch, J.M.; Revich, B.; Sauerborn, R. Human health: Impacts, adaptation, and co-benefits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 709–754. [Google Scholar]
- Costello, A.; Abbas, M.; Allen, A.; Ball, S.; Bell, S.; Bellamy, R.; Friel, S.; Groce, N.; Johnson, A.; Kett, M.; et al. Managing the health effects of climate change: Lancet and University College London Institute for Global Health Commission. Lancet 2009, 373, 1693–1733. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.L.; Ogden, N.H.; Semenza, J.C.; Woodward, A. Detecting and attributing health burdens to climate change. Environ. Health Perspect. 2017, 125, 085004. [Google Scholar] [CrossRef]
- Ebi, K.; Prats, E. Health in national climate change adaptation planning. Ann. Glob. Health 2015, 81, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Son, J.Y.; Liu, J.C.; Bell, M.L. Temperature-related mortality: A systematic review and investigation of effect modifiers. Environ. Res. Lett. 2019, 14, 073004. [Google Scholar] [CrossRef]
- Rodrigues, M.; Santana, P.; Rocha, A. Modelling of Temperature-Attributable Mortality among the Elderly in Lisbon Metropolitan Area, Portugal: A Contribution to Local Strategy for Effective Prevention Plans. J. Urban Health 2021, 98, 516–531. [Google Scholar] [CrossRef]
- Yin, P.; Chen, R.; Wang, L.; Liu, C.; Niu, Y.; Wang, W.; Jiang, Y.; Liu, Y.; Liu, J.; Qi, J.; et al. The added effects of heatwaves on cause-specific mortality: A nationwide analysis in 272 Chinese cities. Environ. Int. 2018, 121, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Petkova, E.; Horton, R.; Bader, D.; Kinney, P. Projected heat-related mortality in the U.S. urban northeast. Int. J. Environ. Res. Public Health 2013, 10, 6734–6747. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Santana, P.; Rocha, A. Modelling climate change impacts on attributable-related deaths and demographic changes in the largest metropolitan area in Portugal: A time-series analysis. Environ. Res. 2020, 190, 109998. [Google Scholar] [CrossRef] [PubMed]
- Navas-Martín, M.; López-Bueno, J.A.; Díaz, J.; Follos, F.; Vellón, J.; Mirón, I.; Luna, M.; Sánchez-Martínez, G.; Culqui, D.; Linares, C. Effects of local factors on adaptation to heat in Spain (1983–2018). Environ. Res. 2022, 209, 112784. [Google Scholar] [CrossRef]
- Cole, R.; Hajat, S.; Murage, P.; Heaviside, C.; Macintyre, H.; Davies, M.; Wilkinson, P. The contribution of demographic changes to future heat-related health burdens under climate change scenarios. Environ. Int. 2023, 173, 107836. [Google Scholar] [CrossRef]
- Armstrong, B.; Bell, M.L.; de Sousa Zanotti Stagliorio Coelho, M.; Leon Guo, Y.L.; Guo, Y.; Goodman, P.; Hashizume, M.; Honda, Y.; Kim, H.; Lavigne, E.; et al. Longer-term impact of high and low temperature on mortality: An international study to clarify length of mortality displacement. Environ. Health Perspect. 2017, 125, 107009. [Google Scholar] [CrossRef]
- Mitchell, D. Human influences on heat-related health indicators during the 2015 Egyptian heat wave. Bull. Am. Meteorol. Soc. 2016, 97, S70–S74. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; Scovronick, N.; Sera, F.; Roye, D.; Schneider, R.; Tobias, A.; Astrom, C.; Guo, Y.; Honda, Y.; Hondula, D.M.; et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Chang. 2021, 11, 492–500. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental panel on climate change. In Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- EPA. United Environmental Protection Agency. Climate Change and Heat Islands. 2022. Available online: https://www.epa.gov/heatislands/climate-change-and-heat-islands (accessed on 18 January 2023).
- WHO. Zero Regrets: Scaling Up Action on Climate Change Mitigation and Adaptation for Health in the WHO European Region. Key Messages from the Working Group on Health in Climate Change; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2021; Available online: https://apps.who.int/iris/handle/10665/344733 (accessed on 18 January 2023).
- Tong, S.; Ebi, K. Preventing and mitigating health risks of climate change. Environ. Res. 2019, 174, 9–13. [Google Scholar] [CrossRef]
- Breil, M.; Downing, C.; Kazmierczak, A.; Mäkinen, K.; Romanovska, L. Social Vulnerability to Climate Change in European Cities—State of Play in Policy and Practice; European Topic Centre on Climate Change impacts, Vulnerability and Adaptation (ETC/CCA) Technical Paper 2018/1; ETC/CCA: Bologna, Italy, 2018. [Google Scholar] [CrossRef]
- Ellena, M.; Ballester, J.; Mercogliano, P.; Ferracin, E.; Barbato, G.; Costa, G.; Ingole, V. Social inequalities in heat-attributable mortality in the city of Turin, northwest of Italy: A time series analysis from 1982 to 2018. Environ. Health 2020, 19, 116. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.; Campbell-Lendrum, D.; Wyns, A. The 1.5 Health Report: Synthesis on Health & Climate Science in the IPCC SR1.5. Available online: https://www.who.int/publications/i/item/the-1.5-health-report (accessed on 6 January 2023).
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot Weather and Heat Extremes: Health Risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Pascal, M.; Wagner, V.; Corso, M.; Laaidi, K.; Ung, A.; Beaudeau, P. Heat and cold related-mortality in 18 French cities. Environ. Int. 2018, 121, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Kenny, G.P.; Yardley, J.; Brown, C.; Sigal, R.J.; Jay, O. Heat stress in older individuals and patients with common chronic diseases. CMAJ 2010, 182, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Rückerl, R.; Breitner, S.; Wolf, K.; Peters, A. Thermal Control, Weather, and Aging. Curr. Environ. Health Rep. 2017, 4, 21–29. [Google Scholar] [CrossRef]
- Martinez, G.S.; Diaz, J.; Hooyberghs, H.; Lauwaet, D.; De Ridder, K.; Linares, C.; Carmona, R.; Ortiz, C.; Kendrovski, V.; Adamonyte, D. Cold-related mortality vs heat-related mortality in a changing climate: A case study in Vilnius (Lithuania). Environ. Res. 2018, 166, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Weitensfelder, L.; Moshammer, H. Evidence of adaptation to increasing temperatures. Int. J. Environ. Res. Public Health 2020, 17, 97. [Google Scholar] [CrossRef]
- Hajat, S. Health effects of milder winters: A review of evidence from the United Kingdom. Environ. Health 2017, 16, 109. [Google Scholar] [CrossRef]
- Diaz, J.; Carmona, R.; Miron, I.J.; Luna, M.Y.; Linares, C. Time trends in the impact attributable to cold days in Spain: Incidence of local factors. Sci. Total Environ. 2019, 655, 305–312. [Google Scholar] [CrossRef]
- Burkart, K.; Meier, F.; Schneider, A.; Breitner, S.; Canário, P.; Alcoforado, M.J.; Scherer, D.; Endlicher, W. Modification of heat-related mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): Evidence from Lisbon, Portugal. Environ. Health Perspect. 2016, 124, 927–934. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Pereira, S.C.; Marta-Almeida, M.; Carvalho, A.C.; Rocha, A. Heat wave and cold spell changes in Iberia for a future climate scenario. Int. J. Clim. 2017, 37, 5192–5205. [Google Scholar] [CrossRef]
- Fonseca, D.; Carvalho, M.J.; Marta-Almeida, M.; Melo-Gonçalves, P.; Rocha, A. Recent trends of extreme temperature indices for the Iberian Peninsula. Phys. Chem. Earth 2016, 94, 66–76. [Google Scholar] [CrossRef]
- Gasparrini, A.; Leone, M. Attributable risk from distributed lag models. BMC Med. Res. Methodol. 2014, 14, 55. [Google Scholar] [CrossRef]
- Gasparrini, A. Distributed lag linear and non-linear models in R: The package dlnm. J. Stat. Softw. 2011, 43, 1. [Google Scholar] [CrossRef]
- Rodrigues, M.; Natário, I.; do Rosário de Oliveira Martins, M. Estimate the effects of environmental determining factors on childhood asthma hospital admissions in Lisbon, Portugal: A time series modelling study. Theor. Appl. Climatol. 2021, 143, 809–821. [Google Scholar] [CrossRef]
- Rodrigues, M.; Santana, P.; Rocha, A. Effects of extreme temperatures on cerebrovascular mortality in Lisbon: A distributed lag non-linear model. Int. J. Biometeorol. 2019, 63, 549–559. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Kinney, P.; Petkova, E.P.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Leone, M.; et al. Temporal variation in heat–mortality associations: A multicountry study. Environ. Health Perspect. 2015, 123, 1200–1207. [Google Scholar] [CrossRef]
- Scovronick, N.; Sera, F.; Acquaotta, F.; Garzena, D.; Fratianni, S.; Wright, C.Y.; Gasparrini, A. The association between ambient temperature and mortality in South Africa: A time-series analysis. Environ. Res. 2018, 161, 229–235. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; Coelho, M.D.; Saldiva, P.H.; Lavigne, E.; Correa, P.M.; et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health 2017, 1, e360–e367. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, M.; Ren, Z.; Li, M.; Wang, B.; Li Liu, D.; Ou, C.-Q.; Yin, P.; Sun, J.; Tong, S. Projecting heat-related excess mortality under climate change scenarios in China. Nat. Commun. 2021, 12, 1039. [Google Scholar] [CrossRef] [PubMed]
- Gosling, S.N.; Hondula, D.M.; Bunker, A.; Ibarreta, D.; Liu, J.; Zhang, X.; Sauerborn, R. Adaptation to climate change: A comparative analysis of modeling methods for heat-related mortality. Environ. Health Perspect. 2017, 125, 087008. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, S.; Liu, D.L.; Chen, D.; Williams, G.; Tong, S. Projecting future temperature-related mortality in three largest Australian cities. Environ. Pollut. 2016, 208, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Achebak, H.; Devolder, D.; Ingole, V.; Ballester, J. Reversal of the seasonality of temperature-attributable mortality from respiratory diseases in Spain. Nat. Commun. 2020, 11, 2457. [Google Scholar] [CrossRef] [PubMed]
- OECD/European Union. Health at a Glance: Europe 2020: STATE of Health in the EU Cycle; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Weinberger, K.R.; Haykin, L.; Eliot, M.N.; Schwartz, J.D.; Gasparrini, A.; Wellenius, G.A. Projected temperature-related deaths in ten large U.S. metropolitan areas under different climate change scenarios. Environ. Int. 2017, 107, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, E.; Gasparrini, A.; Wang, X.; Chen, H.; Yagouti, A.; Fleury, M.D.; Cakmak, S. Extreme ambient temperatures and cardiorespiratory emergency room visits: Assessing risk by comorbid health conditions in a time series study. Environ. Health 2014, 13, 5. [Google Scholar] [CrossRef]
- Schwartz, J. Who is Sensitive to Extremes of Temperature? A Case-Only Analysis. Epidemiology 2005, 16, 67–72. [Google Scholar] [CrossRef]
- Åström, D.O.; Schifano, P.; Asta, F.; Lallo, A.; Michelozzi, P.; Rocklov, J.; Forsberg, B. The effect of heat waves on mortality in susceptible groups: A cohort study of a Mediterranean and a northern European City. Environ. Health 2015, 14, 30. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, L.; Chen, K. Burden of cause-specific mortality attributable to heat and cold: A multicity time-series study in Jiangsu Province, China. Environ. Int. 2020, 2020, 144105994. [Google Scholar] [CrossRef]
- Li, Y.; Lan, L.; Wang, Y.; Yang, C.; Tang, W.; Cui, G.; Luo, S.; Cheng, Y.; Liu, Y.; Liu, J.; et al. Extremely cold and hot temperatures increase the risk of diabetes mortality in metropolitan areas of two Chinese cities. Environ. Res. 2014, 134, 91–97. [Google Scholar] [CrossRef]
- Yardley, J.E.; Stapleton, J.M.; Sigal, R.J.; Kenny, G.P. Do heat events pose a greater health risk for individuals with type 2 diabetes? Diabetes Technol. Ther. 2013, 15, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Medina-Ramón, M.; Schwartz, J. Temperature, temperature extremes, and mortality: A study of acclimatisation and effect modification in 50 US cities. Occup. Environ. Med. 2007, 64, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Samet, J.M. Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiol. Rev. 2002, 24, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Sierra, F.; Hadley, E.; Suzman, R.; Hodes, R. Prospects for life span extension. Annu. Rev. Med. 2009, 60, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Åström, D.O.; Tornevi, A.; Ebi, K.L.; Rocklöv, J.; Forsberg, B. Evolution of minimum mortality temperature in Stockholm, Sweden, 1901–2009. Environ. Health Perspect. 2016, 124, 740–744. [Google Scholar] [CrossRef]
Variables | Total | Mean | SD | Min | Max | Quantiles | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 25 | 50 | 75 | 99 | ||||||
1986–2005 | ||||||||||
Mortality | ||||||||||
DM | 16,447 | 2.3 | 1.7 | 0.0 | 11.0 | 0.0 | 1.0 | 2.0 | 3.0 | 7.0 |
HD | 64,618 | 8.8 | 3.7 | 0.0 | 33.0 | 2.0 | 6.0 | 8.0 | 11.0 | 19.0 |
CVD | 91,824 | 12.6 | 4.5 | 2.0 | 47.0 | 4.0 | 9.0 | 12.0 | 15.0 | 25.0 |
RD | 37,422 | 5.1 | 3.2 | 0.0 | 35.0 | 0.0 | 3.0 | 5.0 | 7.0 | 16.0 |
All causes | 210,311 | 28.7 | 8.9 | 8.0 | 96.0 | 13.0 | 22.0 | 27.0 | 34.0 | 57.0 |
Meteorological | ||||||||||
Max. Temp. | 18.5 | 5.5 | 5.4 | 42.0 | 8.6 | 14.4 | 17.8 | 22.1 | 33.7 | |
Min. Temp. | 13.4 | 4.2 | 0.2 | 27.6 | 4.5 | 10.2 | 13.5 | 16.8 | 22.8 | |
Mean temp. | 15.9 | 4.7 | 3.4 | 34.7 | 6.9 | 12.5 | 15.5 | 19.3 | 27.7 | |
2046–2065 | ||||||||||
Max. Temp. | 20.5 | 5.9 | 7 | 43.6 | 10.5 | 15.8 | 19.7 | 24.5 | 36.4 | |
Min. Temp. | 14.9 | 4.4 | 1.8 | 27.8 | 6.9 | 11.3 | 14.7 | 18.3 | 24.9 | |
Mean temp. | 17.7 | 4.9 | 5.6 | 34.6 | 9.0 | 13.8 | 17.1 | 21.2 | 30.2 |
Cause of Death | Period | Total | Extreme Cold | Moderate Cold | Moderate Heat | Extreme Heat |
---|---|---|---|---|---|---|
Historical period | ||||||
All | 1986–2005 | 9953 (1294 to 17,431) | 3263 (350 to 5600) | 1027 (−84 to 2005) | 8923 (4270 to 16,342) | 2773 (150 to 4970) |
CVD | 1986–2005 | 6401 (−2398 to 14,254) | 164 (−53 to 330) | 6210 (−2518 to 14,118) | 191 (−187 to 490) | 101 (−77 to 234) |
DM | 1986–2005 | 1577 (−604 to 3293) | 60 (−5 to 101) | 204 (−63 to 424) | 1372 (−748 to 3056) | 41 (−23 to 80) |
HD | 1986–2005 | 6373 (1367 to 10,451) | 26 (−98 to 126) | 45 (−221 to 269) | 6333 (1302 to 10,445) | 104 (−42 to 202) |
RD | 1986–2005 | 4613 (1791 to 6991) | 1733 (720 to 2470) | 6233 (1750 to 10,050) | 3993 (1190 to 6271) | 87 (−11 to 145) |
Future period | ||||||
All | 2046–2065 | 11,030 (730 to 20,260) | 22 (2 to 38) | 206 (−73 to 453) | 1083 (548 to 20,077) | 9803 (6100 to 17,450) |
CVD | 2046–2065 | 5635 (−2343 to 12,634) | 11 (−3 to 23) | 5085 (−2586 to 11,977) | 550 (−479 to 1345) | 364 (−274 to 836) |
DM | 2046–2065 | 1621 (−921 to 3648) | 4 (−0 to 7) | 43 (−26 to 103) | 1578 (−963 to 3645) | 149 (−80 to 286) |
HD | 2046–2065 | 7533 (1491 to 12,390) | 1 (−6 to 8) | 4 (−27 to 31) | 7523 (1478 to 12,388) | 354 (−147 to 690) |
RD | 2046–2065 | 5163 (1646 to 7933) | 12 (5 to 17) | 1453 (110 to 2640) | 5013 (1499 to 7786) | 303 (−42 to 504) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, M. Projections of Cause-Specific Mortality and Demographic Changes under Climate Change in the Lisbon Metropolitan Area: A Modelling Framework. Atmosphere 2023, 14, 775. https://doi.org/10.3390/atmos14050775
Rodrigues M. Projections of Cause-Specific Mortality and Demographic Changes under Climate Change in the Lisbon Metropolitan Area: A Modelling Framework. Atmosphere. 2023; 14(5):775. https://doi.org/10.3390/atmos14050775
Chicago/Turabian StyleRodrigues, Mónica. 2023. "Projections of Cause-Specific Mortality and Demographic Changes under Climate Change in the Lisbon Metropolitan Area: A Modelling Framework" Atmosphere 14, no. 5: 775. https://doi.org/10.3390/atmos14050775
APA StyleRodrigues, M. (2023). Projections of Cause-Specific Mortality and Demographic Changes under Climate Change in the Lisbon Metropolitan Area: A Modelling Framework. Atmosphere, 14(5), 775. https://doi.org/10.3390/atmos14050775