Laser Attenuation and Ranging Correction in the Coal Dust Environment Based on Mie Theory and Phase Ranging Principle
Abstract
:1. Introduction
2. Theoretical Modeling
2.1. Laser Attenuation Theory
2.2. Theory of Phase Ranging
3. Experimental Data
3.1. Experiment Setting
3.2. Materials
4. Results and Discussion
4.1. Relationship between the Dust Mass Concentration and Power Attenuation
4.2. Estimation of the Effective Distance for the Laser Rangefinder in a Coal Dust Environment
4.3. Variation in the Laser Wavelength and Ranging Correction in a Coal Dust Environment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, S.; Lu, S.; Li, C.; Chen, H.; Zhang, P.; Fan, J.; Li, X.; Chen, J. Key Technologies and system of adaptive coal cutting in transparent intelligent fully mechanized coal mining face based on precise geodetic coordinates. J. China Coal Soc. 2022, 47, 515–526. [Google Scholar]
- Tang, F.; Zhang, Z.; Qiao, D.; Gu, J. The high efficiency auxiliary system of underground traverse survey. Sci. Surv. Mapp. 2017, 42, 201–206. [Google Scholar]
- Tian, Y. Discussion of Automatic Guidance and Location Technology for Cantilever Excavator. J. Mine Autom. 2010, 36, 26–29. [Google Scholar]
- Bohren, C.F. Absorption and Scattering of Light by Small Particles; WILEY-VCH: Hoboken, NJ, USA, 1998; pp. 57–81. [Google Scholar]
- Trivedi, R.; Chakraborty, M.K.; Tewary, B.K. Dust dispersion modeling using fugitive dust model at an opencast coal project of Western Coalfields Limited, India. J. Sci. Ind. Res. 2009, 68, 71–78. [Google Scholar]
- Wang, H.; Wang, C.; Wang, D. The influence of forced ventilation airflow on water spray for dust suppression on heading face in underground coal mine. Powder Technol. 2017, 320, 498–510. [Google Scholar] [CrossRef]
- Zheng, L. Study and application on key technology improvement of far-pressing-nearing-absorption in fully mechanized driving face for Xing-Long-Zhuang Coalmine 7302 transportation roadway. In Proceedings of the 8th International Symposium on Project Management, ISPM, Beijing, China, 4–5 July 2020. [Google Scholar]
- Liu, W.; Zhao, Y.; Hu, X.; Li, X.; Geng, Z. High performance of coal dust suppression with waste activated sludge using microbially induced calcite precipitation technology. Powder Technol. 2022, 404, 117464. [Google Scholar] [CrossRef]
- Ren, B.; Yuan, L.; Zhou, G.; Li, S.; Meng, Q. Effectiveness of coal mine dust control: A new technique for preparation and efficacy of self-adaptive microcapsule suppressant. Int. J. Min. Sci. Technol. 2022, 32, 1181–1196. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, Y.-Y.; Hu, X.-M.; Feng, Y.; Cheng, W.-M. Study on the adsorption and dust suppression mechanism of urease-producing bacteria on coal dust. Powder Technol. 2022, 409, 117801. [Google Scholar] [CrossRef]
- Wu, Z.; You, J.; Yang, R. Study on Laser Attenuation Character in Sand and Dust Storms. Chin. J. Lasers 2004, 31, 1075–1080. [Google Scholar]
- Wang, Y.G.; Wang, H.Q.; Cao, M.H. Laser signal attenuation due to sand and dust particle scattering. In Future Communication Technology and Engineering. In Proceedings of the 2014 International Conference on Future Communication Technology and Engineering, FCTE, Shenzhen, China, 16–17 November 2014. [Google Scholar]
- Yang, R.K.; Li, Q.Q.; Yao, R.H. Multiple scattering and attenuation for electromagnetic wave propagation in sand and dust atmosphere. Acta Phys. Sin. 2016, 65, 094205. [Google Scholar] [CrossRef]
- Grabner, M.; Kvicera, V. The wavelength dependent model of extinction in fog and haze for free space optical communication. Opt. Express 2011, 19, 3379–3386. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, D.; Wu, P. Experimental Study of the Attenuation Effect of a Laser in a Foggy Environment in an FSO System. In Proceedings of the 2021 IEEE 4th International Conference on Electronics and Communication Engineering, ICECE, Xi’an, China, 17–19 December 2021. [Google Scholar]
- Liu, X.; Gao, T.; Liu, L. Effect of rainfall on laser transmission attenuation based on non-spherical raindrops. Infrared Laser Eng. 2013, 42, 167–173. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, H.; Wang, X.F. Influence of rain attenuation on precise ranging of laser fuze. J. Nanjing Univ. Sci. Technol. 2012, 36, 470–475. [Google Scholar]
- Zhang, D.; Zhang, H.; Dong, D.; Liu, Z. Numerical Simulation of Laser Attenuation in Laser Direct Metal Deposition. Laser Optoelectron. Prog. 2016, 53, 081407. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Han, F.; Chen, S.-F.; Ying, W. Modeling of laser power attenuation by powder particles for laser solid forming. Procedia CIRP 2020, 95, 42–47. [Google Scholar] [CrossRef]
- Tabernero, I.; Lamikiz, A.; Martínez, S.; Ukar, E.; de Lacalle, L.N.L. Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process. J. Mater. Process. Technol. 2012, 212, 516–522. [Google Scholar] [CrossRef]
- Akiba, M.; Ogawa, K.; Wakamori, K.; Kodate, K.; Ito, S. Measurement and simulation of the effect of snowfall on free-space optical propagation. Appl. Opt. 2008, 47, 5736–5743. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Ghassemlooy, Z.; Pesek, J.; Fiser, O.; Le Minh, H.; Bentley, E. Modeling of fog and smoke attenuation in free space optical communications link under controlled laboratory conditions. J. Light. Technol. 2013, 31, 1720–1726. [Google Scholar] [CrossRef]
- Nebuloni, R. Empirical relationships between extinction coefficient and visibility in fog. Appl. Opt. 2005, 44, 3795–3804. [Google Scholar] [CrossRef]
- Zhong, H.; Zhou, J.; Du, Z.; Xie, L. A laboratory experimental study on laser attenuations by dust/sand storms. J. Aerosol Sci. 2018, 121, 31–37. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, H.; Hu, H.; Peng, H. The air attenuation of laser transmission in sand-dust weather. In Proceedings of the ICOCN 2017—16th International Conference on Optical Communications and Networks, Wuzhen, China, 7–10 August 2017. [Google Scholar]
- Ryde, J.; Hillier, N. Performance of laser and radar ranging devices in adverse environmental conditions. J. Field Robot. 2009, 26, 712–727. [Google Scholar] [CrossRef]
- Nasyrov, A.R.; Sadchikov, V.V. Ranging contrasts of objects moving in dust clouds. J. Opt. Technol. 2003, 70, 85–88. [Google Scholar] [CrossRef]
- Zhihua, P.; Chengtian, S.; Bohu, L.; Xiaowen, W.; Mengqian, D.; Hong, S. Accurate Ranging of Dual Wavelength FMCW Laser Fuze Under Different Types of Aerosol Interference. IEEE Sens. J. 2022, 22, 18953–18960. [Google Scholar] [CrossRef]
- Xu, S.; Hou, P.; Liang, R.; Du, Y. Error Analysis and Correction of 3D Laser Detection Data for High-Humidity and Dusty Goafs. J. Northeast. Univ. 2019, 40, 1330–1336. [Google Scholar]
- Hou, P.; Xu, S.; Liang, R.; Ji, X. Environmental error correction of 3D laser detection for goaf based on BP neural network. J. Cent. South Univ. Sci. Technol. 2020, 51, 758–766. [Google Scholar]
Scale | 600 | 325 | 230 | 170 | 120 | 100 | 80 | 70 | 60 |
---|---|---|---|---|---|---|---|---|---|
Size (μm) | <20 | [20, 45] | [45, 63] | [63, 90] | [90, 125] | [125, 150] | [150, 180] | [180, 212] | [212, 250] |
Model | Param | <20 μm | 20–45 μm | 45–60 μm | 60–90 μm | 90–125 μm | 125–150 μm | 150–180 μm | 212–250 μm |
---|---|---|---|---|---|---|---|---|---|
exp | 0.0050 | 0.0050 | 0.0050 | 0 | 0.0288 | 0.0200 | 0.0100 | 0.0050 | |
A | 0.9471 | 0.9935 | 0.9874 | 1.0078 | 0.9578 | 0.9478 | 0.9373 | 0.9799 | |
R | −0.0040 | −0.0060 | −0.0078 | −0.0095 | −0.0142 | −0.0171 | −0.0243 | −0.1085 | |
qua | a | 1.0228 | 0.9998 | 1.0024 | 1.0096 | 1.0048 | 1.0027 | 0.9897 | 1.0102 |
b | 0.0042 | 0.0027 | 0.0066 | 0.0069 | 0.0136 | 0.0194 | 0.0292 | 0.0639 | |
c | 1.1883 × 10−5 | 3.9714 × 10−5 | 5.6893 × 10−5 | 1.0274 × 10−5 | 1.4072 × 10−4 | 1.9865 × 10−4 | 1.7824 × 10−4 | 0.0115 |
Param | <20 μm | 20–45 μm | 45–60 μm | 60–90 μm | 90–125 μm | 125–150 μm | 150–180 μm | 212–250 μm |
---|---|---|---|---|---|---|---|---|
0.0061 | 0.0445 | 0 | −0.0088 | −0.0002 | 0.0246 | 0.0303 | 0.0237 | |
) | 9.4846 | 10.7 | 19.2 | 25.2 | 34.3 | 36.8 | 44.4 | 216.6 |
Param | <20 μm | 20–45 μm | 45–60 μm | 60–90 μm | 90–125 μm | 125–150 μm | 150–180 μm | 212–250 μm |
---|---|---|---|---|---|---|---|---|
1.00001 | 0.99998 | 1 | 0.99998 | 1.00002 | 1.00001 | 0.99999 | 0.99998 | |
) | 4.0844 | 7.811 | 6.2578 | 9.9547 | 3.631 | −92.7828 | 37.077 | 268.202 |
) | 0.02889 | 0.02517 | 0.06795 | 0.10753 | 0.20799 | 21.8649 | 0.03921 | −1.3084 |
Size Level (μm) | <20 | 20–45 | 45–60 | 60–90 | 90–125 | 125–150 | 150–180 | 212–250 |
---|---|---|---|---|---|---|---|---|
RMSE (m) | 2.7 × 10−4 | 3.1 × 10−4 | 4.52 × 10−4 | 4.09 × 10−4 | 4.2 × 10−4 | 4.700 × 10−4 | 4.100 × 10−4 | 4.467 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Mao, S.; Zhang, H. Laser Attenuation and Ranging Correction in the Coal Dust Environment Based on Mie Theory and Phase Ranging Principle. Atmosphere 2023, 14, 845. https://doi.org/10.3390/atmos14050845
Li B, Mao S, Zhang H. Laser Attenuation and Ranging Correction in the Coal Dust Environment Based on Mie Theory and Phase Ranging Principle. Atmosphere. 2023; 14(5):845. https://doi.org/10.3390/atmos14050845
Chicago/Turabian StyleLi, Ben, Shanjun Mao, and Hong Zhang. 2023. "Laser Attenuation and Ranging Correction in the Coal Dust Environment Based on Mie Theory and Phase Ranging Principle" Atmosphere 14, no. 5: 845. https://doi.org/10.3390/atmos14050845
APA StyleLi, B., Mao, S., & Zhang, H. (2023). Laser Attenuation and Ranging Correction in the Coal Dust Environment Based on Mie Theory and Phase Ranging Principle. Atmosphere, 14(5), 845. https://doi.org/10.3390/atmos14050845