Interdecadal Variation of Summer Extreme Heat Events in the Beijing–Tianjin–Hebei Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Data Source
2.2. Indices of Temperature Extremes
2.3. Methods
3. Results
3.1. Climatic Characteristics of Temperature over the BTH Region
3.2. Interdecadal Variation in Summer Extreme Maximum Temperatures over the BTH Region during 1979 to 2020
3.3. Interdecadal Variation in Summer High-Temperature Days over the BTH Region during 1979 to 2020
4. Discussion and Conclusions
- (1)
- During the period 1979–2020, extreme heat events showed an overall upward trend, and TXx and Htd reflected significant interdecadal differences and some similarities in the BTH region. Before the mid-1990s (P1), both TXx and Htd were low values. After the mid-1990s (P2), both indices showed an interrupted increase to high values, but a decreasing trend was observed in the later period.
- (2)
- Extreme heat events primarily occurred in the southern part of the BTH region. The most significant interannual changes in TXx were concentrated in Beijing City, Tianjin City, and the Northeastern Hebei Province, with most regions experiencing an increase in TXx by 1.5–2.0 °C. Notably, the Handan–Xingtai–Hengshui–Cangzhou area exhibited either negative or small TXx values.
- (3)
- In regions experiencing a notable increase in Htd over different decades, there was a discernible migration of high-value areas from south to north. Specifically, in the background of global warming, Htd increased most significantly in Beijing, Tianjin, and Shijiazhuang Cities.
- (4)
- In terms of interdecadal variation, the extreme heat events in the BTH region showed a decreasing trend in June and an increasing trend in July. An increase in the number of stations reporting TXx in July was observed from P1 to P2. For Htd, the number of high-temperature days in July contributed the most over the whole summer. From P1 to P2, the percentage of Htd in July increased for almost the entire BTH region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/#FullReport (accessed on 1 August 2022).
- Shi, J.; Cui, L.; Wen, K.; Tian, Z.; Wei, P.; Zhang, B. Trends in the consecutive days of temperature and precipitation extremes in China during 1961–2015. Environ. Res. 2018, 161, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ding, Z.; Ma, Y. Spatial and temporal analysis of changes in temperature extremes in the non-monsoon region of China from 1961 to 2016. Theor. Appl. Clim. 2019, 137, 2697–2713. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, 1–22. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Gao, J.; Sun, Y.; Liu, Q.; Zhou, M.; Lu, Y.; Li, L. Impact of extreme high temperature on mortality and regional level definition of heat wave: A multi-city study in China. Sci. Total. Environ. 2015, 505, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M.; et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Amatus, G. Spatiotemporal Changes of Heat Waves and Extreme Temperatures in Main Cities of China from 1955 to 2014. Nat. Hazards Earth Syst. Sci. 2020, 20, 1889–1901. [Google Scholar] [CrossRef]
- Ye, L.; Shi, K.; Xin, Z.; Wang, C.; Zhang, C. Compound Droughts and Heat Waves in China. Sustainability 2019, 11, 3270. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, T.; Zhang, W. Attribution of the record-breaking heat event over Northeast Asia in summer 2018: The role of circulation. Environ. Res. Lett. 2020, 15, 054018. [Google Scholar] [CrossRef]
- Xu, K.; Lu, R.; Mao, J.; Chen, R. Circulation anomalies in the mid–high latitudes responsible for the extremely hot summer of 2018 over northeast Asia. Atmos. Ocean. Sci. Lett. 2019, 12, 231–237. [Google Scholar] [CrossRef]
- Lianchun, S. Bule Book of Climate Change in China 2021; Science Press: Beijing, China, 2021. [Google Scholar]
- Ding, Y.; Wang, H. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China. Chin. Sci. Bull. 2015, 61, 1029–1041. [Google Scholar] [CrossRef]
- Ren, G.; Ding, Y.; Zhao, Z.; Zheng, J.; Wu, T.; Tang, G.; Xu, Y. Recent progress in studies of climate change in China. Adv. Atmos. Sci. 2012, 29, 958–977. [Google Scholar] [CrossRef]
- Guo, E.; Zhang, J.; Wang, Y.; Quan, L.; Zhang, R.; Zhang, F.; Zhou, M. Spatiotemporal variations of extreme climate events in Northeast China during 1960–2014. Ecol. Indic. 2018, 96, 669–683. [Google Scholar] [CrossRef]
- Tao, P.; Zhang, Y. Large-scale circulation features associated with the heat wave over Northeast China in summer 2018. Atmos. Ocean. Sci. Lett. 2019, 12, 254–260. [Google Scholar] [CrossRef]
- Ma, Z.G.; Fu, C.B.; Ren, X.B.; Yang, C. Relationship between annual extreme temperature trends and regional warming in northern China. J. Geogr. Sci. 2003, S1, 11–20. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Y.; Lin, Z. Future Changes of Summer Heat Waves over Urban Agglomerations in Eastern China under 1.5 °C and 2.0 °C Global Warming. Front. Earth Sci. 2022, 10, 823286. [Google Scholar] [CrossRef]
- Feng, K.P. Temporal and Spatial Characteristics of Extreme Temperature in the Middle Reach of the Yellow River, China. Appl. Ecol. Environ. Res. 2019, 17, 11869–11885. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, Q.; Yao, R.; Singh, V.P.; Song, C. Spatiotemporal Patterns of Extreme Temperature across the Huai River Basin, China, during 1961–2014, and Regional Responses to Global Changes. Sustainability 2018, 10, 1236. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Yan, Y. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Xing, P.; Yang, R.Z.; Du, W.P.; Dang, B.; Xuan, C.Y.; Xiong, F.L. Spatiotemporal variation of high temperature day and heat wave in North China during 1961−2017. Sci. Geogr. Sin. 2020, 40, 1365–1376. [Google Scholar]
- Chu, M.; Lu, J.; Sun, D. Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration. Land 2022, 11, 275. [Google Scholar] [CrossRef]
- Li, S.; Sun, Z.; Wang, Y.; Wang, Y. Understanding Urban Growth in Beijing-Tianjin-Hebei Region over the Past 100 Years Using Old Maps and Landsat Data. Remote Sens. 2021, 13, 3264. [Google Scholar] [CrossRef]
- Fang, C.; Luo, K.; Kong, Y.; Lin, H.; Ren, Y. Evaluating Performance and Elucidating the Mechanisms of Collaborative Development within the Beijing–Tianjin–Hebei Region, China. Sustainability 2018, 10, 471. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, Y.; Song, L.; Xiang, Y. Responses of extreme high temperatures to urbanization in the Beijing–Tianjin–Hebei urban agglomeration in the context of a changing climate. Meteorol. Appl. 2021, 28, e2024. [Google Scholar] [CrossRef]
- Lin, W.; Chen, R.; Wen, Z.; Chen, W. Large-scale circulation features responsible for different types of extreme high temperatures with extreme coverage over South China. Int. J. Climatol. 2021, 42, 974–992. [Google Scholar] [CrossRef]
- Chen, R.; Lu, R. Large-scale circulation anomalies associated with ‘tropical night’ weather in Beijing, China. Int. J. Climatol. 2014, 34, 1980–1989. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, G.; Wang, Y.; Li, Q.; Li, J. Characteristics and main influence factors of heat waves in Beijing–Tianjin–Shijiazhuang cities of northern China in recent 50 years. Atmos. Sci. Lett. 2020, 21, e1001. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Li, Z.; Liu, W.; Wang, Y. Impact of urbanization on changes in temperature extremes in Beijing during 1978–2008. Chin. Sci. Bull. 2013, 58, 4679–4686. [Google Scholar] [CrossRef]
- Jiang, R.; Yu, X.; Xie, J.; Zhao, Y.; Li, F.; Yang, M. Recent changes in daily climate extremes in a serious water shortage metropolitan region, a case study in Jing-Jin-Ji of China. Theor. Appl. Clim. 2017, 134, 565–584. [Google Scholar] [CrossRef]
- Shi, W.J.; Tao, F.L.; Liu, J.Y. Regional temperature change over the Huang-Huai-Hai Plain of China: The roles of irrigation versus urbanization. Int. J. Climatol 2014, 34, 1181–1195. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bonfils, C.J.; Kueppers, L.M.; Snyder, M.A. Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Ren, F.J.; Zhong, Z.; Hu, Y.J.; Liu, B. Analysis of the causes for a continuous high temperature event over Beijing in early July 2010. In Proceedings of the 2011 International Conference on Machine Intelligence (ICMI 2011), Manila, Philippines, 25 July 2011; pp. 306–311. [Google Scholar]
- Tong, R.; Sun, W.; Han, Q.; Yu, J.; Tian, Z. Spatial and Temporal Variations in Extreme Precipitation and Temperature Events in the Beijing–Tianjin–Hebei Region of China over the Past Six Decades. Sustainability 2020, 12, 1415. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.C. Increasing Heat Stress in Urban Areas of Eastern China: Acceleration by Urbanization. Geophys. Res. Lett. 2018, 45, 13060–13069. [Google Scholar] [CrossRef]
- Li, M.; Luo, D.; Yao, Y.; Zhong, L. Large-scale atmospheric circulation control of summer extreme hot events over China. Int. J. Clim. 2019, 40, 1456–1476. [Google Scholar] [CrossRef]
- Jin, D.; Huo, L. Influence of tropical Atlantic sea surface temperature anomalies on the East Asian summer monsoon. Q. J. R. Meteorol. Soc. 2018, 144, 1490–1500. [Google Scholar] [CrossRef]
- Zhang, M.; Jin, D.; Wang, X.; Chen, L.; Luo, J.; Wang, Z. Seasonal transition of precedent Indian Ocean basin mode and subsequent Indian Ocean Dipole without El Niño–Southern Oscillation impact. Int. J. Clim. 2022, 42, 9023–9031. [Google Scholar] [CrossRef]
- Ding, T.; Gao, H.; Li, W. Extreme high-temperature event in southern China in 2016 and the possible role of cross-equatorial flows. Int. J. Clim. 2018, 38, 3579–3594. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.-C. Summer heat extremes in northern continents linked to developing ENSO events. Environ. Res. Lett. 2020, 15, 074042. [Google Scholar] [CrossRef]
- Xie, T.J.; Wang, J.; Feng, T.C.; Ding, T.; Zhao, L. Linkage of the decadal variability of extreme summer heat in North China with the IPOD since 1981. Adv. Atmos. Sci. 2023. [Google Scholar] [CrossRef]
Indices | Abbreviation | Definition |
---|---|---|
Extreme maximum temperature | TXx (°C) | The maximum value of daily maximum temperature in a year |
The number of high-temperature days | Htd (d) | The number of days with a daily maximum temperature of ≥35 °C in a year |
Period/Month | 1979–2020 | 1979–1994 | 1997–2020 |
---|---|---|---|
June | 91 | 97 | 86 |
July | 73 | 66 | 88 |
August | 10 | 17 | 10 |
Periods | Index | PNA | PDO | ENSO | TBO | Monsoon Intensity |
---|---|---|---|---|---|---|
1979–2020 | TXx | 0.26 | −0.05 | 0.07 | −0.04 | 0.2 |
Htd | 0.16 | 0.03 | 0.13 | −0.01 | 0.3 | |
1979–1994 (P1) | TXx | 0.27 | 0.35 | −0.27 | −0.08 | −0.4 |
Htd | 0.08 | 0.55 * | 0.05 | −0.02 | −0.2 | |
1997–2020 (P2) | TXx | 0.15 | 0.13 | 0.16 | −0.02 | 0.35 |
Htd | 0.03 | 0.24 | 0.14 | −0.04 | 0.41 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Zhang, J.; Wang, J.; Xie, T. Interdecadal Variation of Summer Extreme Heat Events in the Beijing–Tianjin–Hebei Region. Atmosphere 2023, 14, 854. https://doi.org/10.3390/atmos14050854
Liang Y, Zhang J, Wang J, Xie T. Interdecadal Variation of Summer Extreme Heat Events in the Beijing–Tianjin–Hebei Region. Atmosphere. 2023; 14(5):854. https://doi.org/10.3390/atmos14050854
Chicago/Turabian StyleLiang, Yanan, Junzhi Zhang, Ji Wang, and Tiejun Xie. 2023. "Interdecadal Variation of Summer Extreme Heat Events in the Beijing–Tianjin–Hebei Region" Atmosphere 14, no. 5: 854. https://doi.org/10.3390/atmos14050854
APA StyleLiang, Y., Zhang, J., Wang, J., & Xie, T. (2023). Interdecadal Variation of Summer Extreme Heat Events in the Beijing–Tianjin–Hebei Region. Atmosphere, 14(5), 854. https://doi.org/10.3390/atmos14050854