A Study on Radiological Hazard Assessment for Jordan Research and Training Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Location
2.2. Atmosperic Dispersion Assessment
2.3. Source Term
2.4. Meteorological Data
2.5. Dose Assessment
- HE(inh),i: Effective dose from inhalation (Sv);
- Ca,i(x): Average activity concentration of radionuclide i at location x (Bq/m3);
- Dinh,i: Inhalation dose coefficient (Sv/Bq);
- Iinh: Inhalation rate (m3/a).
- HE(ex,cloud),i: Effective dose from external exposure to radionuclide i (Sv);
- Ca,i(x): Time integrated activity concentration of radionuclide i in air at location x (Bq·s/m3);
- D(ex,cloud),i: External dose coefficient for immersion in the cloud (Sv per (Bq·s)/m3);
- Oout: Fraction of time spent outdoors;
- Lcloud: Dimensionless factor considering the shielding effect of buildings.
- HE(ex,deposit),i: Effective dose from deposited radionuclide i (Sv);
- Cs,i(x): Time integrated activity concentration of radionuclide i on soil at location x (Bq·s/m2);
- Dex,deposit: External dose coefficient from the deposit (Sv per (Bq·s)/m2);
- Oout: Fraction of time spent outdoors;
- Ldeposit: Dimensionless factor that considers the shielding effect of buildings.
2.6. Other Input Parameters
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suh, K.S.; Han, M.H.; Jung, S.H.; Lee, C.W. Three-dimensional numerical modeling of pollutant transport at local-scale complex terrain. Ann. Nucl. 2008, 35, 1016–1023. [Google Scholar] [CrossRef]
- Jawerth, N.; Mattar, E. Exploring research reactors and their use. IAEA Bull. Res. React. 2019, 60–64, 4–5. [Google Scholar]
- Korea Atomic Energy Research Institute. Jordan Research and Training Reactor Final Safety Analysis Report; Korea Atomic Energy Research Institute: Daejeon, Republic of Korea, 2016. [Google Scholar]
- Xoubi, N. Jordan’s First Research Reactor Project: Driving Forces, Present Status and the Way Ahead. In Proceedings of the European Research Reactor Conference, Rome, Italy, 20–24 March 2011; pp. 26–30. [Google Scholar]
- Kim, K.-O.; Jun, B.J.; Lee, B.; Park, S.-J.; Roh, G. Comparison of first criticality prediction and experiment of the Jordan research and training reactor (JRTR). Nucl. Eng. Technol. 2020, 52, 14–18. [Google Scholar] [CrossRef]
- IAEA. Derivation of the Source Term and Analysis of the Radiological Consequences of Research Reactor Accidents, Safety Reports Series No. 53; IAEA: Vienna, Austria, 2008. [Google Scholar]
- IAEA. Preparedness and Response for a Nuclear or Radiological Emergency, Safety Standards Series No. GSR Part 7; IAEA: Vienna, Austria, 2015. [Google Scholar]
- IAEA. Criteria for Use in Preparedness and Response for a Nuclear or Radiological Emergency, Safety Standards Series No. GSG-2; IAEA: Vienna, Austria, 2011. [Google Scholar]
- Korea Atomic Energy Research Institute. Jordan Research and Training Reactor Radiation Environmental Report; Korea Atomic Energy Research Institute: Daejeon, Republic of Korea, 2015. [Google Scholar]
- Xoubi, N. Source term derivation and radioactive release evaluation for JRTR research reactor under severe accident. Sci. Technol. Nucl. Install. 2020, 2020, 1868965. [Google Scholar] [CrossRef]
- Homann, S.G.; Aluzzi, F. HotSpot Health Physics Codes Version 3.1.2 User’s Guide; Lawrence Livermore National Laboratory: Livermore, CA, USA, 2020. [Google Scholar]
- Till, J.E.; Grogan, H. Radiological Risk Assessment and Environmental Analysis; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Raúl, P.; Kathleen, M.T.; Sohan, L.C.; Francesco, M.; Emilie, N.; Gert, S.; Dejan, T. Mid-range atmospheric dispersion modelling. Intercomparison of simple models in EMRAS-2 project. J. Environ. Radioact. 2016, 162–163, 225–234. [Google Scholar] [CrossRef]
- Periáñez, R.; Bezhenar, R.; Brovchenko, I.; Duffa, C.; Iosjpe, M.; Jung, K.T.; Kim, K.O.; Kobayashi, T.; Liptak, L.; Little, A.; et al. Marine radionuclide transport modelling: Recent developments, problems and challenges. Environ. Model. Softw. 2019, 122, 104523. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Jordan Department of Statistics. Jordan Estimated Population of 2022; Jordan Department of Statistics: Amman, Jordan, 2023. [Google Scholar]
- Jordan Department of Statistics. Jordan Statistical Yearbook 2013; Jordan Department of Statistics: Amman, Jordan, 2013. [Google Scholar]
- Draxler, R.R. HYSPLIT4 User’s Guide; NOAA Technical Memorandum ERL ARL-230; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1999. [Google Scholar]
- Draxler, R.; Hess, G. An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Draxler, R.R.; Hess, G. Description of the HYSPLIT4 Modeling System; NOAA Tech. Memo. ERL ARL-224; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1997; p. 24. [Google Scholar]
- Takahara, S.; Iijima, M.; Watanabe, M. Assessment Model of Radiation Doses from External Exposure to the Public after the Fukushima Daiichi Nuclear Power Plant Accident. Health Phys. 2020, 118, 664–677. [Google Scholar] [CrossRef] [PubMed]
- UNSCEAR. Methodology for Estimating Human Exposures Due to Radioactive Discharges; UNSCEAR: Vienna, Austria, 2013. [Google Scholar]
- ICRP. Age-dependent dose to members of the public from intake of radionuclides: Part 5 compilation of ingestion and inhalation dose coefficients. Ann. ICRP 1996, 26, 1–91. [Google Scholar] [CrossRef] [PubMed]
- ICRP. Human respiratory tract model for radiological protection. Ann. ICRP 1994, 24, 1–482. [Google Scholar] [CrossRef]
- ICRP. Age-dependent doses to members of the public from intake of radionuclides: Part 4 Inhalation dose coefficients. Ann. ICRP 1995, 25, 1–402. [Google Scholar] [CrossRef]
- Eckerman, K.F.; Ryman, J.C. Federal Guidance Report No. 12: External Exposure to Radionuclides in Air, Water, and Soil; U.S. Environmental Protection Agency: Washington, DC, USA, 1993. [Google Scholar]
- Eckerman, K.F.; Wolbarst, A.B.; Rischardson, A.C.B. Federal Guidance Report No. 11: Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion; U.S. Environmental Protection Agency: Washington, DC, USA, 1988. [Google Scholar]
- Draxler, R.; Stunder, B.; Rolph, G.; Stein, A.; Taylor, A.; Zinn, S.; Loughner, C.; Crawford, A. HYSPLIT User’s Guide; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 2022. [Google Scholar]
Reactor Type | Open-Tank-in-Pool |
Thermal Power | 5 MWth (upgradable to 10 MWth) |
Coolant and Cooling Method | Light water and downward, forced convection |
Coolant Temperature | 37 °C (inlet) and 44 °C (outlet) |
Fuel | 19.75 wt.% enriched U3Si2-Al |
Moderator | Light water |
Reflectors | Beryllium and heavy water |
Absorber Materials | Hafnium and B4C |
Shielding | Water and heavy concrete |
Governorate | 2013 1 | 2022 | ||
---|---|---|---|---|
Population | Percentage (%) | Population | Percentage (%) | |
Amman | 2,528,500 | 38.7 | 4,744,700 | 42.0 |
Balqa | 437,500 | 6.7 | 582,100 | 5.2 |
Zarqa | 972,900 | 14.9 | 1,616,000 | 14.3 |
Madaba | 163,300 | 2.5 | 224,000 | 2.0 |
Irbid | 1,162,300 | 17.8 | 2,095,700 | 18.5 |
Mafraq | 306,900 | 4.7 | 651,100 | 5.8 |
Jarash | 195,900 | 3.0 | 280,700 | 2.5 |
Ajlun | 150,200 | 2.3 | 208,500 | 1.8 |
Karak | 254,700 | 3.9 | 374,800 | 3.3 |
Tafiela | 91,400 | 1.4 | 114,000 | 1.0 |
Ma’an | 124,100 | 1.9 | 187,600 | 1.7 |
Aqaba | 142,300 | 2.2 | 222,800 | 2.0 |
Total | 6,530,000 | 100.0 | 11,302,000 | 100.0 |
Nuclide | Inventory (Bq) | Nuclide | Inventory (Bq) | Nuclide | Inventory (Bq) |
---|---|---|---|---|---|
Kr-83m | 7.97 × 1014 | I-134 | 4.84 × 1015 | Te-133m | 2.61 × 1014 |
Kr-85 | 3.49 × 1013 | I-135 | 3.93 × 1015 | Te-134 | 5.26 × 1014 |
Kr-85m | 1.84 × 1015 | Cs-134 | 7.87 × 1013 | Ba-139 | 1.97 × 1014 |
Kr-87 | 3.71 × 1015 | Cs-134m | 3.03 × 1013 | Ba-140 | 1.88 × 1014 |
Kr-88 | 5.06 × 1015 | Cs-136 | 3.68 × 1013 | Ba-141 | 1.78 × 1014 |
Kr-89 | 6.44 × 1015 | Cs-137 | 8.64 × 1013 | Sr-89 | 1.23 × 1014 |
Xe-131m | 5.39 × 1013 | Cs-138 | 3.09 × 1015 | Sr-90 | 5.39 × 1012 |
Xe-133 | 9.91 × 1015 | Cs-139 | 2.91 × 1015 | Sr-91 | 1.69 × 1014 |
Xe-135 | 2.86 × 1015 | Rb-88 | 1.53 × 1015 | Sr-92 | 1.74 × 1014 |
Xe-135m | 1.91 × 1015 | Rb-89 | 2.03 × 1015 | Sb-131 | 2.00 × 1014 |
Xe-137 | 9.53 × 1015 | Te-127 | 1.42 × 1013 | Mo-99 | 2.40 × 1013 |
Xe-138 | 9.61 × 1015 | Te-127m | 2.00 × 1012 | Rh-105 | 5.39 × 1012 |
Br-84 | 6.13 × 1014 | Te-129 | 4.57 × 1013 | Ru-103 | 1.24 × 1013 |
I-130 | 1.43 × 1013 | Te-129m | 8.16 × 1012 | Ru-105 | 5.98 × 1012 |
I-131 | 1.86 × 1015 | Te-131 | 2.04 × 1014 | Tc-99m | 2.13 × 1013 |
I-132 | 2.77 × 1015 | Te-131m | 3.60 × 1013 | Np-239 | 1.48 × 1013 |
I-133 | 4.18 × 1015 | Te-132 | 3.43 × 1014 |
Months | Precipitation (mm) | Relative Humidity (%) | Wind | ||||
---|---|---|---|---|---|---|---|
Mean | Max. Monthly | Max. in 24 h | Mean Daily | Speed (m/s) | Prevailing Direction (Deg.) | ||
Mean | Max. Daily | ||||||
1 | 49.4 | 63.9 | 38.5 | 73.3 | 2.8 | 20.6 | 207 |
2 | 44.6 | 125.5 | 36.5 | 65.2 | 3.1 | 15.4 | 244 |
3 | 41.9 | 116.6 | 60 | 64.4 | 3.3 | 15.4 | 252 |
4 | 8.5 | 29.9 | 14.0 | 49.5 | 2.9 | 20.6 | 269 |
5 | 3.2 | 23.4 | 25.3 | 40.4 | 2.9 | 36.0 | 280 |
6 | 0.8 | 0.2 | 14.8 | 46.8 | 3.4 | 12.3 | 282 |
7 | 0.0 | 0.0 | 0.0 | 50.2 | 3.7 | 14.4 | 285 |
8 | 0.0 | 0.0 | 0.0 | 52.5 | 2.8 | 12.3 | 282 |
9 | 0.2 | 2.3 | 2.9 | 52.4 | 2.7 | 16.5 | 279 |
10 | 7.8 | 20 | 19.8 | 55 | 2.8 | 13.4 | 274 |
11 | 25.9 | 1.6.4 | 40.2 | 59.1 | 2.9 | 11.3 | 227 |
12 | 38.7 | 91.3 | 32.0 | 68.5 | 2.8 | 11.8 | 234 |
Period | 1976~2000 | 1976~2000 | 1976~2000 | 1976~2000 | 1981~2000 | 1985~2000 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talafha, M.; Kim, S.; Suh, K.-S. A Study on Radiological Hazard Assessment for Jordan Research and Training Reactor. Atmosphere 2023, 14, 859. https://doi.org/10.3390/atmos14050859
Talafha M, Kim S, Suh K-S. A Study on Radiological Hazard Assessment for Jordan Research and Training Reactor. Atmosphere. 2023; 14(5):859. https://doi.org/10.3390/atmos14050859
Chicago/Turabian StyleTalafha, Mohammad, Sora Kim, and Kyung-Suk Suh. 2023. "A Study on Radiological Hazard Assessment for Jordan Research and Training Reactor" Atmosphere 14, no. 5: 859. https://doi.org/10.3390/atmos14050859
APA StyleTalafha, M., Kim, S., & Suh, K. -S. (2023). A Study on Radiological Hazard Assessment for Jordan Research and Training Reactor. Atmosphere, 14(5), 859. https://doi.org/10.3390/atmos14050859