Sniffing Drones: A Promising Solution for Measuring Railroad Emissions in Urban Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. The “Sniffing” System for Railroad Emissions
2.2. Area of Study
3. Results
3.1. Sulfur Dioxide
3.2. Ozone
3.3. Nitrogen Dioxide
3.4. Vertical Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Conselho Nacional do Eeio Ambiente (CONAMA). Resolução Conama no 18, de 06/05/1986. Dispõe Sobre a Criação do Programa de Controle de Poluição do ar Por Veículos Automotores—PROCONVE; Ministério do Meio Ambiente (MMA): Brasília, Brazil, 1986.
- Conselho Nacional do Eeio Ambiente (CONAMA). Resolução Conama no 315, de 29/10/2002. Dispõe Sobre a Nova Fase do Programa de Controle de Poluição do ar Por Veículos Automotores—PROCONVE; Ministério do Meio Ambiente (MMA): Brasília, Brazil, 2002.
- Petrobras. Óleo Diesel: Informações Técnicas, 1st ed.; 2021; p. 26. Available online: https://petrobras.com.br/data/files/04/93/72/4C/5A39C710E2EF93B7B8E99EA8/Manual-de-Diesel_2021.pdf (accessed on 22 August 2022).
- Paralovo, S.L. Análise de Poluentes Gasosos e Material Particulado Fino Em Manacapuru, AM. Master’s Thesis, Federal University of Paraná, Curitiba, Brazil, 2016. [Google Scholar]
- Zanella, T.V. Navios e poluição do ar: Um estudo sobre a regulação das emissões atmosféricas por embarcações. Rev. Esc. Guerra Nav. 2018, 24, 301–328. [Google Scholar] [CrossRef]
- Abbasi, S.; Jansson, A.; Sellgren, U.; Olofsson, U. Particle Emissions from Rail Traffic: A Literature Review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2511–2544. [Google Scholar] [CrossRef]
- Mir, S.A.; Bhat, J.I.; Lone, F.; Rehman, M.U.; Nazir, N.; Lone, A.A.; Ali, T.; Jehangir, A. Synergistic effects of vehicular emissions (NO2, SO2 and SPM) on progression of Crocus sativus L. in saffron bowl kashmir. Adv. Environ. 2021, 3, 100033. [Google Scholar] [CrossRef]
- D’agosto, M.d.A. Transporte, Uso de Energia e Impactos Ambientais: Uma Abordagem Introdutória, 1st ed.; Elsevier: Rio de Janeiro, Brazil, 2015; p. 251. ISBN 978-85-352-2821-2. [Google Scholar]
- EPA. Sulfur Dioxide Basics. United States Environmental Protection Agency. 2022. Available online: https://www.epa.gov/so2-pollution/sulfur-dioxide-basics (accessed on 15 June 2022).
- EPA. Health Effects of Ozone Pollution. United States Environmental Protection Agency. 2022. Available online: https://www.epa.gov/ground-level-ozone-pollution/health-effects-ozone-pollution (accessed on 22 August 2022).
- World Bank. Pollution Prevention and Abatement Handbook: Toward Cleaner Production; The International Bank for Reconstruction and Development: Washington, DC, USA, 1999; p. 472. ISBN 0-8213-3638-x. [Google Scholar]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016, 12, 1245049. [Google Scholar] [CrossRef]
- Reno, A.L.; Brooks, E.G.; Ameredes, B.T. Mechanisms of heightened airway sensitivity and responses to inhaled SO2 in asthmatics. Environ. Health Insights 2015, 9, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Gaston, B.; Drazen, J.M.; Loscalzo, J.; Stamler, J.S. The biology of nitrogen oxides in the airways. Am. J. Respir. Crit. Care Med. 1994, 149, 538–551. [Google Scholar] [CrossRef]
- EPA. Basic Information about NO2. United States Environmental Protection Agency. 2022. Available online: https://www.epa.gov/no2-pollution/basic-information-about-no2 (accessed on 22 August 2022).
- Seinfeld, J.H.; Pandis, A.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 1248. ISBN 978-0-471-72018-8. [Google Scholar]
- Nguyen, D.-H.; Lin, C.; Vu, C.-T.; Cheruiyot, N.K.; Nguyen, M.K.; Le, T.H.; Lukkhasorn, W.; Vo, T.-D.; Bui, X.-T. Tropospheric ozone and NOx: A review of worldwide variation and meteorological influences. Environ. Technol. Innov. 2022, 28, 102809. [Google Scholar] [CrossRef]
- Chen, T.-M.; Kuschner, W.G.; Gokhale, J.; Shofer, S. Outdoor air pollution: Ozone health effects. Am. J. Med. Sci. 2007, 333, 244–248. [Google Scholar] [CrossRef] [PubMed]
- CCAC. Tropospheric Ozone: Climate & Clean Air Coalition. 2022. Available online: https://www.ccacoalition.org/en/slcps/tropospheric-ozone (accessed on 22 August 2022).
- EPA. Basic Ozone Layer Science. United States Environmental Protection Agency. 2021. Available online: https://www.epa.gov/ozone-layer-protection/basic-ozone-layer-science#:~:text=the%20ozone%20layer%20lies%20approximately,earth’s%20surface%2c%20in%20the%20stratosphere (accessed on 15 September 2022).
- EPA. Ground-Level Ozone Basics. United States Environmental Protection Agency. 2022. Available online: https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics (accessed on 3 November 2022).
- Jońca, J.; Pawnuk, M.; Bezyk, Y.; Arsen, A.; Sówka, I. Drone-Assisted Monitoring of Atmospheric Pollution—A Comprehensive Review. Sustainability 2022, 14, 11516. [Google Scholar] [CrossRef]
- WHO. Air Quality and Health. World Health Organization. 2021. Available online: https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts (accessed on 17 June 2022).
- Shelekhov, A.; Afanasiev, A.; Shelekhova, E.; Kobzev, A.; Tel’minov, A.; Molchunov, A.; Poplevina, O. Low-Altitude Sensing of Urban Atmospheric Turbulence with UAV. Drones 2021, 6, 61. [Google Scholar] [CrossRef]
- DJI. Phantom 3 Standard Specifications. 2022. Available online: https://www.dji.com/br/phantom-3-standard (accessed on 14 June 2022).
- DJI. Phantom 3 (Pro) Vs. Phantom 4 (Pro): Review of the Image Quality Comparison. 2023. Available online: https://store.dji.com/guides/phantom-3-pro-vs-phantom-4-pro-image-quality/ (accessed on 3 March 2023).
- Brinkman, J.L.; Davis, B.; Johnson, C.E. Post-movement stabilization time for the downwash region of a 6-rotor uav for remote gas monitoring. Heliyon 2020, 6, 9. [Google Scholar] [CrossRef]
- Roldán, J.J.; Joossen, G.; Sanz, D.; Del Cerro, J.; Barrientos, A. Mini-UAV based sensory system for measuring environmental variables in greenhouses. Sensors 2015, 15, 3334–3350. [Google Scholar] [CrossRef] [PubMed]
- ENVEA. Miniature Solution for Real-Time Continuous Pollution Monitoring. France. 2022. Available online: https://www.envea.global/design/medias/envea_cairsens_air-quality-odors-microsensors_en.pdf (accessed on 22 August 2022).
- Spinelle, L.; Gerboles, M.; Aleixandre, M. Report of the Laboratory and In-Situ Validation of Micro-Sensors for Monitoring Ambient Air Pollution-O12: CairClipO3/NO2 of CAIRPOL (F). EUR 26373; JRC86479; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Spinelle, L.; Gerboles, M.; Aleixandre, M. Report of Laboratory and In-Situ Validation of Micro-Sensor for Monitoring Ambient Air Pollution-NO9: CairClipNO2 of CAIRPOL (F). EUR 26394; JRC86499; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Junior, D.V.; Dias, N.L. Método Empírico para Determinação de Outliers em Séries de Fluxos de Dados Micrometeorológicos Pós-processados. Ciência Natura 2013, 35, 150–152. [Google Scholar]
- Gu, Q.; Michanowicz, D.R.; Jia, C. Developing a modular unmanned aerial vehicle (UAV) platform for air pollution profiling. Sensors 2018, 18, 4363. [Google Scholar] [CrossRef]
- Ministério da Defesa. Aeronaves não Tripuladas para uso Recreativo—Aeromodelos; Comando da Aeronáutica. MCA 56-2; Ministério da Defesa: Brasília, Brazil, 2020.
- Google. Curitiba. 2021. Available online: https://www.google.com.br/maps (accessed on 29 December 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baglioli, F.; Godoi, R.H.M. Sniffing Drones: A Promising Solution for Measuring Railroad Emissions in Urban Environments. Atmosphere 2023, 14, 865. https://doi.org/10.3390/atmos14050865
Baglioli F, Godoi RHM. Sniffing Drones: A Promising Solution for Measuring Railroad Emissions in Urban Environments. Atmosphere. 2023; 14(5):865. https://doi.org/10.3390/atmos14050865
Chicago/Turabian StyleBaglioli, Felipe, and Ricardo H. M. Godoi. 2023. "Sniffing Drones: A Promising Solution for Measuring Railroad Emissions in Urban Environments" Atmosphere 14, no. 5: 865. https://doi.org/10.3390/atmos14050865
APA StyleBaglioli, F., & Godoi, R. H. M. (2023). Sniffing Drones: A Promising Solution for Measuring Railroad Emissions in Urban Environments. Atmosphere, 14(5), 865. https://doi.org/10.3390/atmos14050865