Short-Term Exposure to PM10 and Black Carbon in Residential Microenvironments in Bragança, Portugal: A Case Study in Bedrooms, Living Rooms, and Kitchens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Sites
2.2. Experimental Setup
2.3. Data Quality Assurance
2.4. Air Change Rate
2.5. Black Carbon Analyses
2.6. Deposition Dose and Dosimetry in the Human Respiratory Tract
2.7. Air Mass Trajectories
2.8. Statistical Analyses
3. Results and Discussion
3.1. PM10 Concentrations
3.2. Black Carbon Concentrations
3.3. Deposition Fractions and Dose of PM10 and BC
3.4. Study Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saini, J.; Dutta, M.; Marques, G. A Comprehensive Review on Indoor Air Quality Monitoring Systems for Enhanced Public Health. Sustain. Environ. Res. 2020, 30, 6. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, A.; Martellini, T. Indoor Air Quality and Health. Int. J. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on Pollution and Health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Health, Environment and Climate Change: Report by the Director-General; World Health Organization: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/handle/10665/276332 (accessed on 24 May 2023).
- Lange, P.; Celli, B.; Agustí, A.; Boje Jensen, G.; Divo, M.; Faner, R.; Guerra, S.; Marott, J.L.; Martinez, F.D.; Martinez-Camblor, P.; et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2015, 373, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, Y.; Liu, S.; Chen, X.; Zou, W.; Zhao, D.; Li, X.; Pu, J.; Huang, L.; Chen, J.; et al. Association between Exposure to Ambient Particulate Matter and Chronic Obstructive Pulmonary Disease: Results from a Cross-Sectional Study in China. Thorax 2017, 72, 788–795. [Google Scholar] [CrossRef]
- Farraj, A.K.; Walsh, L.; Haykal-Coates, N.; Malik, F.; Mcgee, J.; Winsett, D.; Duvall, R.; Kovalcik, K.; Cascio, W.E.; Higuchi, M.; et al. Carbon Black Nanoparticle Instillation Induces Sustained Inflammation and Genotoxicity in Mouse Lung and Liver. Part. Fibre Toxicol. 2012, 9, 5. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Gray, D.L.; Wallace, L.A.; Brinkman, M.C.; Buehler, S.S.; La Londe, C. Respiratory and Cardiovascular Effects of Metals in Ambient Particulate Matter: A Critical Review. Rev. Environ. Contam. Toxicol. 2015, 234, 135–203. [Google Scholar] [CrossRef]
- World Health Organization. Household Air Pollution. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 30 March 2023).
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The Carcinogenicity of Outdoor Air Pollution. Lancet Oncol. 2013, 14, 1262. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
- Leech, J.A.; Nelson, W.C.; Burnett, R.T.; Aaron, S.; Raizenne, M.E. It’s about Time: A Comparison of Canadian and American Time–Activity Patterns. J. Expo. Sci. Environ. Epidemiol. 2002, 12, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, X.; Zhu, T.; Lv, D.; Chen, Y.; Hou, L.A.; Zhang, Y.; Ren, M. Characteristics and Relationships between Indoor and Outdoor PM2.5 in Beijing: A Residential Apartment Case Study. Aerosol Air Qual. Res. 2016, 16, 2386–2395. [Google Scholar] [CrossRef]
- Gao, X.; Gao, W.; Sun, X.; Jiang, W.; Wang, Z.; Li, W. Measurements of Indoor and Outdoor Fine Particulate Matter during the Heating Period in Jinan, in North China: Chemical Composition, Health Risk, and Source Apportionment. Atmosphere 2020, 11, 885. [Google Scholar] [CrossRef]
- Tofful, L.; Perrino, C.; Canepari, S. Comparison Study between Indoor and Outdoor Chemical Composition of PM2.5 in Two Italian Areas. Atmosphere 2020, 11, 368. [Google Scholar] [CrossRef]
- Alves, C.; Vicente, A.; Oliveira, A.R.; Candeias, C.; Vicente, E.; Nunes, T.; Cerqueira, M.; Evtyugina, M.; Rocha, F.; Almeida, S.M. Fine Particulate Matter and Gaseous Compounds in Kitchens and Outdoor Air of Different Dwellings. Int. J. Environ. Res. Public Health 2020, 17, 5256. [Google Scholar] [CrossRef]
- Canha, N.; Lage, J.; Galinha, C.; Coentro, S.; Alves, C.; Almeida, S.M. Impact of Biomass Home Heating, Cooking Styles, and Bread Toasting on the Indoor Air Quality at Portuguese Dwellings: A Case Study. Atmosphere 2018, 9, 214. [Google Scholar] [CrossRef]
- Pastuszka, J.S.; Talik, E.; Płoszaj-Pyrek, J.; Grygierek, K.; Ferdyn-Grygierek, J. Exposure to PM4 in Homes with Tobacco Smoke in and around Katowice, Poland. Atmosphere 2021, 12, 1590. [Google Scholar] [CrossRef]
- Vicente, E.D.; Alves, C.A.; Martins, V.; Almeida, S.M.; Lazaridis, M. Lung-Deposited Dose of Particulate Matter from Residential Exposure to Smoke from Wood Burning. Environ. Sci. Pollut. Res. 2021, 28, 65385–65398. [Google Scholar] [CrossRef]
- Qian, J.; Peccia, J.; Ferro, A.R. Walking-Induced Particle Resuspension in Indoor Environments. Atmos. Environ. 2014, 89, 464–481. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to Cities’ Ambient Particulate Matter (PM): A Systematic Review of Local Source Contributions at Global Level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Dimitrova, R.; Richards, K.; Hamlyn, D.; Camilleri, G.; Weeks, M.; Sini, J.F.; Britter, R.; Borrego, C.; Schatzmann, M.; et al. Numerical Model Inter-Comparison for Wind Flow and Turbulence Around Single-Block Buildings. Environ. Model. Assess. 2011, 16, 169–181. [Google Scholar] [CrossRef]
- Nadali, A.; Arfaeinia, H.; Asadgol, Z.; Fahiminia, M. Indoor and Outdoor Concentration of PM10, PM2.5 and PM1 in Residential Building and Evaluation of Negative Air Ions (NAIs) in Indoor PM Removal. Environ. Pollut. Bioavailab. 2020, 32, 47–55. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Fan, L.; Wang, J.; Zhu, Y.D.; Li, X.; Wang, X.Q.; Yan, X.; Li, L.; Zhang, Y.; Yang, W.; et al. Characterization and Exposure Assessment of Household Fine Particulate Matter Pollution in China. Indoor Air 2021, 31, 1391–1401. [Google Scholar] [CrossRef]
- Feliciano, M.; Lira, F.; Furst, L.C.; Arioli, R. The influence of domestic heating systems in indoor air quality in homes of a region of Northeastern Portugal. Prog. Ind. Ecol. 2022, 15, 162–182. [Google Scholar] [CrossRef]
- BéruBé, K.A.; Sexton, K.J.; Jones, T.P.; Moreno, T.; Anderson, S.; Richards, R.J. The Spatial and Temporal Variations in PM10 Mass from Six UK Homes. Sci. Total Environ. 2004, 324, 41–53. [Google Scholar] [CrossRef]
- Abdel-Salam, M.M.M. Indoor Exposure of Elderly to Air Pollutants in Residential Buildings in Alexandria, Egypt. Build. Environ. 2022, 219, 109221. [Google Scholar] [CrossRef]
- Scibor, M. Are We Safe inside? Indoor Air Quality in Relation to Outdoor Concentration of PM10 and PM2.5 and to Characteristics of Homes. Sustain. Cities Soc. 2019, 48, 101537. [Google Scholar] [CrossRef]
- Madureira, J.; Slezakova, K.; Silva, A.I.; Lage, B.; Mendes, A.; Aguiar, L.; Pereira, M.C.; Teixeira, J.P.; Costa, C. Assessment of Indoor Air Exposure at Residential Homes: Inhalation Dose and Lung Deposition of PM10, PM2.5 and Ultrafine Particles among Newborn Children and Their Mothers. Sci. Total Environ. 2020, 717, 137293. [Google Scholar] [CrossRef]
- Pordata. Municipalities Database. Available online: https://www.pordata.pt/Municipios (accessed on 21 March 2023).
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Hydrology and Earth System Sciences Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Gonçalves, A.; Ornellas, G.; Ribeiro, A.C.; Maia, F.; Rocha, A.; Feliciano, M. Urban Cold and Heat Island in the City of Bragança (Portugal). Climate 2018, 6, 70. [Google Scholar] [CrossRef]
- Carrico, C.M.; Karacaoglu, J. Impacts of a Prescribed Fire on Air Quality in Central New Mexico. Atmosphere 2023, 14, 316. [Google Scholar] [CrossRef]
- Wadlow, I.; Paton-Walsh, C.; Forehead, H.; Perez, P.; Amirghasemi, M.; Guérette, É.-A.; Gendek, O.; Kumar, P. Understanding Spatial Variability of Air Quality in Sydney: Part 2—A Roadside Case Study. Atmosphere 2019, 10, 217. [Google Scholar] [CrossRef]
- Cipoli, Y.A.; Targino, A.C.; Krecl, P.; Furst, L.C.; dos Alves, C.A.; Feliciano, M. Ambient Concentrations and Dosimetry of Inhaled Size-Segregated Particulate Matter during Periods of Low Urban Mobility in Bragança, Portugal. Atmos. Pollut. Res. 2022, 13, 101512. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Cherian, R. Regional and Seasonal Variations in Aerosol Optical Characteristics and Their Frequency Distributions over India during 2001–2005. J. Geophys. Res. Atmos. 2008, 113, 8207. [Google Scholar] [CrossRef]
- Moosmüller, H.; Arnott, W.P.; Rogers, C.F.; Bowen, J.L.; Gillies, J.A.; Pierson, W.R.; Collins, J.F.; Durbin, T.D.; Norbeck, J.M. Time Resolved Charaterization of Diesel Particulate Emissions. 1. Instruments for Particle Mass Measurements. Environ. Sci. Technol. 2001, 35, 781–787. [Google Scholar] [CrossRef]
- Raparthi, N.; Debbarma, S.; Phuleria, H.C. Development of Real-World Emission Factors for on-Road Vehicles from Motorway Tunnel Measurements. Atmos. Environ. X 2021, 10, 100113. [Google Scholar] [CrossRef]
- Wallace, L.A.; Wheeler, A.J.; Kearney, J.; Van Ryswyk, K.; You, H.; Kulka, R.H.; Rasmussen, P.E.; Brook, J.R.; Xu, X. Validation of Continuous Particle Monitors for Personal, Indoor, and Outdoor Exposures. J. Expo. Sci. Environ. Epidemiol. 2010, 21, 49–64. [Google Scholar] [CrossRef]
- Kingham, S.; Durand, M.; Aberkane, T.; Harrison, J.; Gaines Wilson, J.; Epton, M. Winter Comparison of TEOM, MiniVol and DustTrak PM10 Monitors in a Woodsmoke Environment. Atmos. Environ. 2006, 40, 338–347. [Google Scholar] [CrossRef]
- Hänninen, O. Novel Second-Degree Solution to Single Zone Mass-Balance Equation Improves the Use of Build-up Data in Estimating Ventilation Rates in Classrooms. J. Chem. Health Saf. 2013, 20, 14–19. [Google Scholar] [CrossRef]
- Aguilar, A.J.; de la Hoz-Torres, M.L.; Costa, N.; Arezes, P.; Martínez-Aires, M.D.; Ruiz, D.P. Assessment of Ventilation Rates inside Educational Buildings in Southwestern Europe: Analysis of Implemented Strategic Measures. J. Build. Eng. 2022, 51, 104204. [Google Scholar] [CrossRef]
- Westgate, S.; Ng, N.L. Using In-Situ CO2, PM1, PM2.5, and PM10 Measurements to Assess Air Change Rates and Indoor Aerosol Dynamics. Build. Environ. 2022, 224, 109559. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, E.D.; Evtyugina, M.; Vicente, A.M.; Nunes, T.; Lucarelli, F.; Calzolai, G.; Nava, S.; Calvo, A.I.; del Alegre, C.B.; et al. Indoor and Outdoor Air Quality: A University Cafeteria as a Case Study. Atmos. Pollut. Res. 2020, 11, 531–544. [Google Scholar] [CrossRef]
- Atanacio, A.J.; Cohen, D.D.; Button, D.; Paneras, N.; Garton, D. Multi-Wavelength Absorption Black Carbon Instrument (MABI) Manual. Available online: https://www.ansto.gov.au/media/2716/download (accessed on 20 March 2023).
- Ryś, A.; Samek, L. Measurement report: Determination of Black Carbon concentration in PM2.5 fraction by Multi-wavelength absorption black carbon instrument (MABI). Atmos. Chem. Phys. 2021, 1–14. [Google Scholar] [CrossRef]
- Manohar, M.; Atanacio, A.; Button, D.; Cohen, D. MABI—A Multi-Wavelength Absorption Black Carbon Instrument for the Measurement of Fine Light Absorbing Carbon Particles. Atmos. Pollut. Res. 2021, 12, 133–140. [Google Scholar] [CrossRef]
- Anjilvel, S. A Multiple-Path Model of Particle Deposition in the Rat Lung. Fundam. Appl. Toxicol. 1995, 28, 41–50. [Google Scholar] [CrossRef]
- Cheng, K.H.; Swift, D.L. Calculation of Total Deposition Fraction of Ultrafine Aerosols in Human Extrathoracic and Intrathoracic Regions. Aerosol Sci. Technol. 1995, 22, 194–201. [Google Scholar] [CrossRef]
- ICRP. Human Respiratory Tract Model for Radiological Protection. J. Radiol. Prot. 1994, 66, 24. [Google Scholar]
- Yeh, H.; Schum, G. Models of Human Lung Airways and Their Application to Inhaled Particle Deposition. Bull. Math. Biol. 1980, 42, 461–480. [Google Scholar] [CrossRef]
- Hitzenberger, R.; Tohno, S. Comparison of Black Carbon (BC) Aerosols in Two Urban Areas—Concentrations and Size Distributions. Atmos. Environ. 2001, 35, 2153–2167. [Google Scholar] [CrossRef]
- Goel, A.; Izhar, S.; Gupta, T. Study of Environmental Particle Levels, Its Effects on Lung Deposition and Relationship With Human Behaviour. Energy Environ. Sustain. 2018, 77–91. [Google Scholar] [CrossRef]
- Díaz, J.; Linares, C.; Carmona, R.; Russo, A.; Ortiz, C.; Salvador, P.; Trigo, R.M. Saharan Dust Intrusions in Spain: Health Impacts and Associated Synoptic Conditions. Environ. Res. 2017, 156, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Calheiros, T.; Nunes, J.P.; Pereira, M.G. Recent Evolution of Spatial and Temporal Patterns of Burnt Areas and Fire Weather Risk in the Iberian Peninsula. Agric. For. Meteorol. 2020, 287, 107923. [Google Scholar] [CrossRef]
- Cavaleiro, R.; Russo, A.; Sousa, P.M.; Durão, R. Association between Prevailing Circulation Patterns and Coarse Particles in Portugal. Atmosphere 2021, 12, 85. [Google Scholar] [CrossRef]
- Nicolae, V.; Talianu, C.; Andrei, S.; Antonescu, B.; Ene, D.; Nicolae, D.; Dandocsi, A.; Toader, V.E.; Ștefan, S.; Savu, T.; et al. Multiyear Typology of Long-Range Transported Aerosols over Europe. Atmosphere 2019, 10, 482. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-Time Environmental Applications and Display SYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Katsoulis, B.D. The Potential for Long-Range Transport of Air-Pollutants into Greece: A Climatological Analysis. Sci. Total Environ. 1999, 231, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Canha, N.; Lage, J.; Candeias, S.; Alves, C.; Almeida, S.M. Indoor Air Quality during Sleep under Different Ventilation Patterns. Atmos. Pollut. Res. 2017, 8, 1132–1142. [Google Scholar] [CrossRef]
- Querol, X.; Tobías, A.; Pérez, N.; Karanasiou, A.; Amato, F.; Stafoggia, M.; Pérez García-Pando, C.; Ginoux, P.; Forastiere, F.; Gumy, S.; et al. Monitoring the Impact of Desert Dust Outbreaks for Air Quality for Health Studies. Environ. Int. 2019, 130, 104867. [Google Scholar] [CrossRef]
- Abdel-Salam, M.M.M. Seasonal Variation in Indoor Concentrations of Air Pollutants in Residential Buildings. J. Air Waste Manag. Assoc. 2021, 71, 761–777. [Google Scholar] [CrossRef]
- Popovicheva, O.; Chichaeva, M.; Kovach, R.; Zhdanova, E.; Kasimov, N. Seasonal, Weekly, and Diurnal Black Carbon in Moscow Megacity Background under Impact of Urban and Regional Sources. Atmosphere 2022, 13, 563. [Google Scholar] [CrossRef]
- Reddington, C.L.; McMeeking, G.; Mann, G.W.; Coe, H.; Frontoso, M.G.; Liu, D.; Flynn, M.; Spracklen, D.V.; Carslaw, K.S. The Mass and Number Size Distributions of Black Carbon Aerosol over Europe. Atmos. Chem. Phys. 2013, 13, 4917–4939. [Google Scholar] [CrossRef]
- Lucarelli, F.; Calzolai, G.; Chiari, M.; Nava, S.; Carraresi, L. Study of Atmospheric Aerosols by IBA Techniques: The LABEC Experience. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2018, 417, 121–127. [Google Scholar] [CrossRef]
- Heyder, J.; Gebhart, J.; Rudolf, G.; Stahlhofen, W. Physical Factors Determining Particle Deposition in the Human Respiratory Tract. J. Aerosol Sci. 1980, 11, 505–515. [Google Scholar] [CrossRef]
- Heyder, J.; Gebhart, J.; Rudolf, G.; Schiller, C.F.; Stahlhofen, W. Deposition of Particles in the Human Respiratory Tract in the Size Range 0.005–15 Μm. J. Aerosol Sci. 1986, 17, 811–825. [Google Scholar] [CrossRef]
- Amoatey, P.; Omidvarborna, H.; Al-Jabri, K.; Al-Harthy, I.; Baawain, M.S.; Al-Mamun, A. Deposition Modeling of Airborne Particulate Matter on Human Respiratory Tract during Winter Seasons in Arid-Urban Environment. Aerosol Sci. Eng. 2022, 6, 71–85. [Google Scholar] [CrossRef]
- Manojkumar, N.; Srimuruganandam, B. Age-Specific and Seasonal Deposition of Outdoor and Indoor Particulate Matter in Human Respiratory Tract. Atmos. Pollut. Res. 2022, 13, 101298. [Google Scholar] [CrossRef]
- Carey, M.A.; Card, J.W.; Voltz, J.W.; Arbes, S.J.; Germolec, D.R.; Korach, K.S.; Zeldin, D.C. It’s All about Sex: Gender, Lung Development and Lung Disease. Trends Endocrinol. Metab. 2007, 18, 308–313. [Google Scholar] [CrossRef]
- Qiu, Z.; Song, J.; Xu, X.; Luo, Y.; Zhao, R.; Zhou, W.; Xiang, B.; Hao, Y. Commuter Exposure to Particulate Matter for Different Transportation Modes in Xi’an, China. Atmos. Pollut. Res. 2017, 8, 940–948. [Google Scholar] [CrossRef]
- Lv, H.; Li, H.; Qiu, Z.; Zhang, F.; Song, J. Assessment of Pedestrian Exposure and Deposition of PM10, PM2.5 and Ultrafine Particles at an Urban Roadside: A Case Study of Xi’an, China. Atmos. Pollut. Res. 2021, 12, 112–121. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, X.; Liu, Z.; Luo, J. Quantitative Assessment of Cyclists’ Exposure to PM and BC on Different Bike Lanes. Atmos. Pollut. Res. 2022, 13, 101588. [Google Scholar] [CrossRef]
- Islam, M.S.; Saha, S.C.; Sauret, E.; Gemci, T.; Gu, Y.T. Pulmonary Aerosol Transport and Deposition Analysis in Upper 17 Generations of the Human Respiratory Tract. J. Aerosol Sci. 2017, 108, 29–43. [Google Scholar] [CrossRef]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The Health Effects of Ambient PM2.5 and Potential Mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef]
- Redaelli, M.; Sanchez, M.; Fuertes, E.; Blanchard, M.; Mullot, J.; Baeza-Squiban, A.; Garçon, G.; Léger, C.; Jacquemin, B. Health Effects of Ambient Black Carbon and Ultrafine Particles. Environ. Epidemiol. 2019, 3, 347–348. [Google Scholar] [CrossRef]
Characteristics | House 1 | House 2 | House 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | LR | K | B | LR | K | B | LR | K | |
Location | Residential area | High-density traffic avenue | Apartment building/complex | ||||||
Orientation | Yard | Street | Street | Street | Yard | Yard | Parking | Parking | Street |
Area (m2) | 16 | 30 | 30 | 12 | 20 | 10 | 10 | 40 | 20 |
Ventilation settings | CDSW * | ODSW * | ODOW * | CDSW * | CDCW * | CDCW * | CDSW * | ODOW * | ODCW * |
Permanent occupants | 4 | 3 | 4 | ||||||
Daily occupancy (h) | 20 | 14 | 24 | ||||||
Pets | 2 cats | No | 1 dog | ||||||
Source of energy for cooking | Gas | Gas | Gas | ||||||
Apartment floor | 1 | 1 | 3 |
Parameters | Options/Values | ||
---|---|---|---|
Adult Male | Adult Female | ||
Airway Morphometry | Species | Human | |
Model | Yeh/Schum 5-Lobe | ||
FRC (mL) a | 3300 | 2680 | |
URT volume (mL) a | 50 | 40 | |
Particle Properties | Density (g cm−3) | 1 | |
Aspect ratio | 1 | ||
Diameter (µm) | MMAD | ||
Particle distribution | Single | ||
MMAD | H1 = 5.96, H2 = 4.95, H3 = 7.74 | ||
GSD | H1 = 2.13, H2 = 3.17, H3 = 2.82 | ||
Exposure Scenario | Exposure condition | Constant exposure | |
Aerosol concentration (µg m−3) | Mean of PM10 | ||
Breathing frequency (min−1) a | 12 | 14 | |
Tidal volume (mL) a | 750 | 464 | |
Inspiratory fraction | 0.5 | 0.5 | |
Breathing scenario | Nasal |
PM10 | |||||
---|---|---|---|---|---|
Sites | Gender | Total | Head | Tracheobronchial | Pulmonary |
House 1 | Male | 0.86 | 0.73 | 0.04 | 0.09 |
Female | 0.83 | 0.69 | 0.05 | 0.08 | |
House 2 | Male | 0.73 | 0.61 | 0.03 | 0.09 |
Female | 0.69 | 0.57 | 0.04 | 0.08 | |
House 3 | Male | 0.79 | 0.67 | 0.03 | 0.08 |
Female | 0.76 | 0.64 | 0.04 | 0.08 | |
BC | |||||
All houses | Male | 0.30 | 0.10 | 0.06 | 0.14 |
Female | 0.26 | 0.08 | 0.07 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipoli, Y.A.; Gamelas, C.A.; Almeida, S.M.; Feliciano, M.; Alves, C. Short-Term Exposure to PM10 and Black Carbon in Residential Microenvironments in Bragança, Portugal: A Case Study in Bedrooms, Living Rooms, and Kitchens. Atmosphere 2023, 14, 1064. https://doi.org/10.3390/atmos14071064
Cipoli YA, Gamelas CA, Almeida SM, Feliciano M, Alves C. Short-Term Exposure to PM10 and Black Carbon in Residential Microenvironments in Bragança, Portugal: A Case Study in Bedrooms, Living Rooms, and Kitchens. Atmosphere. 2023; 14(7):1064. https://doi.org/10.3390/atmos14071064
Chicago/Turabian StyleCipoli, Yago Alonso, Carla Alexandra Gamelas, Susana Marta Almeida, Manuel Feliciano, and Célia Alves. 2023. "Short-Term Exposure to PM10 and Black Carbon in Residential Microenvironments in Bragança, Portugal: A Case Study in Bedrooms, Living Rooms, and Kitchens" Atmosphere 14, no. 7: 1064. https://doi.org/10.3390/atmos14071064
APA StyleCipoli, Y. A., Gamelas, C. A., Almeida, S. M., Feliciano, M., & Alves, C. (2023). Short-Term Exposure to PM10 and Black Carbon in Residential Microenvironments in Bragança, Portugal: A Case Study in Bedrooms, Living Rooms, and Kitchens. Atmosphere, 14(7), 1064. https://doi.org/10.3390/atmos14071064