City Wind Impact on Air Pollution Control for Urban Planning with Different Time-Scale Considerations: A Case Study in Chengdu, China
Abstract
:1. Introduction
2. Methods
2.1. Geographical Information of Chengdu City
2.2. Meteorological Data
3. Results
3.1. Pollutant Concentrations and WS in Diurnal, Weekly, Seasonal and Annual Cycles
3.2. Influence of WS on Pollutant Concentrations in 16 Orientations
4. Discussion
5. Conclusions and Prospects
- (1)
- An inland city with a monsoon climate, Chengdu, in western China is chosen as the case here, with a loop layout and central symmetry urban planning. Changes in climatic zones or regions (tropical, subtropical, maritime climates, etc.), terrain types (plain, plateau, mountain, coastal cities, etc.), and specific urban planning (commercial/industrial/residential districts, traffic network, etc.) can contribute to various air quality levels and distributions from different space and time scale perspectives.
- (2)
- Dynamic and coupled climatic conditions play a significant role in determining specific city outdoor air environments, in terms of dynamic temperature, humidity, precipitation and wind variation impacting both pollutants distribution and possible interactive reactions. The linear fitting approach is used here to approximately qualify the multi-impact city pollution distributions with climatic factor and time-scales considerations. More accurate and advanced algorithm or statistics analysis methods such as multiple regression, Fourier transformation, sequential quadratic programming, etc. might be more helpful to reveal explicitly the multi-factor interactive influence mechanism.
- (3)
- Practical city air quality index also depends on the pollutant types, monitoring and evaluation standards. For instance, the emission and transmission mechanisms are quite different among particles, volatile organic compounds and microorganism contaminants, resulting in different wind impacting effects. In practical applications, the air quality index could vary widely with different monitoring approaches, benchmarks and reference values, even in places or climatic regions.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Chen, Y.; Li, Z.L.; Jiang, W.L. Ecological resilience assessment of an emerging urban agglomeration: A case study of Chengdu-Chongqing economic circle, China. Pol. J. Environ. Stud. 2022, 31, 2381–2395. [Google Scholar]
- Ouyang, H.L.; Tang, X.; Kumar, R.; Zhang, R.H.; Brasseur, G.; Churchill, B.; Alam, M.; Kan, H.D.; Liao, H.; Zhu, T. Toward better and healthier air quality: Implementation of WHO 2021 global air quality guidelines in Asia. Bull. Am. Meteorol. Soc. 2022, 103, 1696–1703. [Google Scholar] [CrossRef]
- Baklanov, A.; Molina, L.T.; Gauss, M. Megacities, air quality and climate. Atmos. Environ. 2016, 126, 235–249. [Google Scholar] [CrossRef]
- Lu, D. Air pollution may be behind millions of deaths in China. New Sci. 2020, 245, 12. [Google Scholar] [CrossRef]
- Iqbal, W.; Tang, Y.M.; Chau, K.Y.; Irfan, M.; Mohsin, M. Nexus between air pollution and NCOV-2019 in China: Application of negative binomial regression analysis. Process Saf. Environ. Prot. 2021, 150, 557–565. [Google Scholar] [CrossRef]
- Wang, J.Y.; Gao, A.F.; Li, S.R.; Liu, Y.H.; Zhao, W.F.; Wang, P.; Zhang, H.L. Regional joint PM2.5-O-3 control policy benefits further air quality improvement and human health protection in Beijing-Tianjin-Hebei and its surrounding areas. J. Environ. Sci. 2023, 130, 75–84. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Ying, Q.; Zhang, H. Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ. 2014, 95, 598–609. [Google Scholar] [CrossRef]
- Tian, Y.Z.; Shi, G.L.; Han, B.; Wu, J.H.; Zhou, X.Y.; Zhou, L.D.; Zhang, P.; Feng, Y.C. Using an improved Source Directional Apportionment method to quantify the PM2.5 source contributions from various directions in a megacity in China. Chemosphere 2015, 119, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xie, S.D. Characteristics and formation mechanism of a heavy air pollution episode caused by biomass burning in Chengdu, Southwest China. Sci. Total Environ. 2014, 473–474, 507–517. [Google Scholar] [CrossRef]
- Chu, H.J.; Huang, B.; Lin, C.Y. Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship. Atmos. Environ. 2015, 102, 176–182. [Google Scholar] [CrossRef]
- Hai, C.D.; Kim Oanh, N.T. Effects of local, regional meteorology and emission sources on mass and compositions of particulate matter in Hanoi. Atmos. Environ. 2013, 78, 105–112. [Google Scholar] [CrossRef]
- Yin, Z.C.; Li, Y.Y.; Zhang, Y.J.; Wang, H.J. Evident differences of haze days between December and January in north China and possible relationships with preceding climate factors. Int. J. Climatol. 2023, 43, 438–455. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, B.; Xie, S.D. Characteristics of the long-range transport dust events in Chengdu, Southwest China. Atmos. Environ. 2015, 122, 713–722. [Google Scholar] [CrossRef]
- Shi, G.L.; Liu, J.Y.; Tian, Y.Z.; Song, D.L.; Yu, H.F.; Feng, Y.C.; Russell, A.G. Quantification of long-term primary and secondary source contributions to carbonaceous aerosols. Environ. Pollut. 2016, 219, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.; Li, X.L.; Fang, C.S. Characteristics of Air Pollutants Emission and Its Impacts on Public Health of Chengdu, Western China. Int. J. Environ. Res. Public Health 2022, 19, 16852. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Tan, Q.W.; Liu, H.F.; Deng, Y.; Wu, K.Y.; Liu, C.W.; Zhou, X.L. Emission characteristics and high-resolution spatial and temporal distribution of pollutants from motor vehicles in Chengdu, China. Atmos. Pollut. Res. 2019, 10, 749–758. [Google Scholar] [CrossRef]
- Hu, H.; Zeng, S.L.; Han, X. Effects of Urban Landscapes on Pollutant Concentrations in Chengdu Plain Urban Agglomeration. Atmosphere 2022, 13, 1492. [Google Scholar] [CrossRef]
- Wang, H.F.; Liu, Z.H.; Zhang, Y.; Yu, Z.Y.; Chen, C.R. Impact of different urban canopy models on air quality simulation in Chengdu, southwestern China. Atmos. Environ. 2021, 267, 118775. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Z.H.; Zhang, Y.; Xu, W.X.; Lv, X.T.; Liu, Y.Y.; Li, X.; Xiao, J.; Ma, F. Study on Land-use Changes and Their Impacts on Air Pollution in Chengdu. Atmosphere 2020, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, Q.; Zhao, H.; Wang, L.; Tao, R. Variations in PM10, PM2.5 and PM1.0 in an urban area of the Sichuan Basin and their relation to meteorological factors. Atmosphere 2015, 6, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.G.; Chen, C.; Wei, S.; Wu, Y.Q.; Wang, Y.F.; Wan, Y.L. Impact of the external window crack structure on indoor PM2.5 mass concentration. Build. Environ. 2016, 108, 240–251. [Google Scholar] [CrossRef]
- Gomez-Carracedo, M.P.; Andrade, J.M.; Ballabio, D.; Prada-Rodriguez, D.; Muniategui-Lorenzo, S.; Consonni, V.; Pineiro-Iglesias, M.; Lopez-Mahia, P. Impact of medium-distance pollution sources in a Galician suburban site (NW Iberian peninsula). Sci. Total Environ. 2015, 512–513, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Grundström, M.; Hak, C.; Chen, D.; Hallquist, M.; Pleijel, H. Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air—Relationships with wind speed, vertical temperature gradient and weather type. Atmos. Environ. 2015, 120, 317–327. [Google Scholar] [CrossRef]
- Squizzato, S.; Masiol, M. Application of meteorology-based methods to determine local and external contributions to particulate matter pollution: A case study in Venice (Italy). Atmos. Environ. 2015, 119, 69–81. [Google Scholar] [CrossRef]
- Uria-Tellaetxe, I.; Carslaw, D.C. Conditional bivariate probability function for source identification. Environ. Model. Softw. 2014, 59, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Salazar, A.A.; Zheng, J.F.; Che, Y.Z.; Xiao, F. Deep generative model for probabilistic wind speed and wind power estimation at a wind farm. Energy Sci. Eng. 2022, 10, 1855–1873. [Google Scholar] [CrossRef]
- Zeng, Y.Y.; Jaffe, D.A.; Qiao, X.; Miao, Y.C.; Tang, Y. Prediction of potentially high PM2.5 concentrations in Chengdu, China. Aerosol Air Qual. Res. 2020, 20, 956–965. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.L.; Sun, T.L.; Liu, C.F.; Li, L.; Xu, X.Q.; Miao, S.J.; Lin, L.H.; Chen, Y.Y.; Fan, S.J. Quantitative evaluation of impacts of the steadiness and duration of urban surface wind patterns on air quality. Sci. Total Environ. 2022, 850, 157957. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, R.; Khaniabadi, Y.O.; Sicard, P.; De Marco, A.; Anbari, K. Ambient PM2.5 and O3 pollution and health impacts in Iranian megacity. Stoch. Environ. Res. Risk Assess. 2022, 37, 175–184. [Google Scholar] [CrossRef]
- Xiang, J.B.; Seto, E.; Mo, J.H.; Zhang, J.F.; Zhang, Y.P. Impacts of implementing Healthy Building guidelines for daily PM2.5 limit on premature deaths and economic losses in urban China: A population-based modeling study. Environ. Int. 2021, 147, 106342. [Google Scholar] [CrossRef]
- Xiang, J.B.; Weschler, C.J.; Wang, Q.Q.; Zhang, L.; Mo, J.H.; Ma, R.; Zhang, J.F.; Zhang, Y.P. Reducing indoor levels of outdoor PM2.5 in urban China: Impact on mortalities. Environ. Sci. Technol. 2021, 53, 3119–3127. [Google Scholar] [CrossRef] [PubMed]
Clusters | Time Ranges | Hours | Clusters | Details | Time Ranges | Hours | ||
---|---|---|---|---|---|---|---|---|
Diurnal cycle | Peak hours | 24:00~11:00 | 4380 | Annual Cycle | Festival hours | New Year’s Day | 00:00, 1 January 2019~23:00, 3 January 2019 | 72 |
Off-peak hours | 12:00~23:00 | 4380 | Spring Festival | 00:00, 7 February 2019~23:00, 13 February 2019 | 168 | |||
Weekly cycle | Weekday hours | 00:00, Monday~23:00, Friday | 6240 | Tomb Sweeping Day | 00:00, 2 April 2019~23:00, 4 April 2019 | 72 | ||
Weekend hours | 00:00, Saturday~23:00, Sunday | 2520 | May Day | 00:00, 30 April 2019~23:00, 2 May 2019 | 72 | |||
Seasonal cycle | Winter hours | 00:00, 19 December 2018~23:00, 3 February 2019 | 2112 | Dragon Boat Festival | 00:00, 9 June 2019~23:00, 11 June 2019 | 72 | ||
00:00, 7 November 2019~23:00, 17 December 2019 | Mid-autumn Festival | 00:00, 15 September 2019~23:00, 17 September 2019 | 72 | |||||
Spring hours | 00:00, 4 February 2019~23:00, 4 May 2019 | 2184 | National Day | 00:00, 1 October 2019~23:00, 7 October 2019 | 168 | |||
Summer hours | 00:00, 5 May 2019~23:00, 5 August 2019 | 2232 | TRD hours | Spring Festival Rush | 00:00, 24 January 2019~23:00, 3 March 2019 | 977 | ||
Autumn hours | 00:00, 6 August 2019~23:00, 6 November 2019 | 2232 | Summer Holiday Rush | 00:00, 1 July 2019~23:00, 31 August 2019 | 1487 | |||
Workday hours | 5600 |
No Wind | Indefinite Direction | 16 Orientations | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SUM | E (1) | NE to E (2) | NE (3) | NE to N (4) | N (5) | NW to N (6) | NW (7) | NW to W (8) | W (9) | SW to W (10) | SW (11) | SW to S (12) | S (13) | SE to S (14) | SE (15) | SE to E (16) | ||||||
Hour | % | Hour | % | Hour | % | Wind Frequency (%) | ||||||||||||||||
Peak Hours | 1568 | 36% | 1106 | 25% | 1706 | 39% | 1.29 | 1.70 | 3.17 | 5.98 | 21.9 | 10.0 | 2.75 | 0.70 | 1.47 | 5.51 | 11.6 | 16.5 | 9.96 | 3.99 | 2.17 | 1.29 |
Off-peak Hours | 577 | 13% | 1176 | 27% | 2627 | 60% | 4.30 | 4.00 | 4.76 | 10.8 | 19.1 | 6.66 | 2.13 | 0.84 | 1.37 | 3.05 | 7.96 | 12.0 | 10.7 | 4.11 | 3.81 | 4.45 |
Weekday Hours | 1542 | 25% | 1670 | 27% | 3028 | 49% | 3.27 | 3.10 | 4.39 | 8.49 | 20.7 | 8.39 | 2.48 | 0.76 | 1.62 | 3.90 | 9.58 | 13.1 | 10.1 | 3.76 | 2.91 | 3.43 |
Weekend Hours | 603 | 24% | 612 | 24% | 1305 | 52% | 2.76 | 3.07 | 3.52 | 9.89 | 18.9 | 7.05 | 2.15 | 0.84 | 0.92 | 4.29 | 8.97 | 15.3 | 11.2 | 4.75 | 3.75 | 2.68 |
Winter hours | 573 | 27% | 589 | 28% | 950 | 45% | 5.05 | 3.37 | 4.42 | 10.0 | 20.2 | 8.74 | 1.79 | 0.63 | 0.84 | 2.74 | 9.58 | 12.2 | 9.89 | 4.42 | 2.53 | 3.58 |
Spring hours | 586 | 27% | 545 | 25% | 1053 | 48% | 4.75 | 3.23 | 5.22 | 10.3 | 19.6 | 7.31 | 2.09 | 1.14 | 2.37 | 4.65 | 10.9 | 10.7 | 7.41 | 3.13 | 3.32 | 3.89 |
Summer hours | 419 | 19% | 578 | 26% | 1235 | 55% | 1.38 | 2.43 | 3.97 | 7.21 | 18.6 | 8.66 | 2.75 | 0.73 | 1.30 | 4.86 | 8.26 | 15.4 | 13.8 | 5.18 | 2.91 | 2.59 |
Autumn hours | 567 | 25% | 570 | 26% | 1095 | 49% | 1.83 | 3.47 | 3.01 | 8.58 | 22.5 | 7.21 | 2.74 | 0.64 | 1.10 | 3.56 | 9.04 | 16.3 | 9.95 | 3.38 | 3.84 | 2.92 |
Festival hours | 193 | 28% | 147 | 21% | 356 | 51% | 3.09 | 2.25 | 3.93 | 8.99 | 20.5 | 8.15 | 2.53 | 1.12 | 0.56 | 2.53 | 8.71 | 14.9 | 11.5 | 3.37 | 5.34 | 2.53 |
TRD hours | 706 | 29% | 638 | 26% | 1120 | 45% | 2.95 | 3.48 | 2.86 | 5.71 | 17.4 | 10.3 | 2.95 | 0.98 | 1.79 | 3.48 | 8.48 | 15.0 | 11.1 | 5.54 | 4.38 | 3.66 |
Workday hours | 1352 | 24% | 1422 | 25% | 2826 | 50% | 3.08 | 3.04 | 4.67 | 10.2 | 21.2 | 6.86 | 2.12 | 0.67 | 1.38 | 4.35 | 9.91 | 13.2 | 10.1 | 3.61 | 2.44 | 3.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, J.; Li, J.; Gao, F.; Zhang, Y. City Wind Impact on Air Pollution Control for Urban Planning with Different Time-Scale Considerations: A Case Study in Chengdu, China. Atmosphere 2023, 14, 1068. https://doi.org/10.3390/atmos14071068
Xiong J, Li J, Gao F, Zhang Y. City Wind Impact on Air Pollution Control for Urban Planning with Different Time-Scale Considerations: A Case Study in Chengdu, China. Atmosphere. 2023; 14(7):1068. https://doi.org/10.3390/atmos14071068
Chicago/Turabian StyleXiong, Jianwu, Jin Li, Fei Gao, and Yin Zhang. 2023. "City Wind Impact on Air Pollution Control for Urban Planning with Different Time-Scale Considerations: A Case Study in Chengdu, China" Atmosphere 14, no. 7: 1068. https://doi.org/10.3390/atmos14071068
APA StyleXiong, J., Li, J., Gao, F., & Zhang, Y. (2023). City Wind Impact on Air Pollution Control for Urban Planning with Different Time-Scale Considerations: A Case Study in Chengdu, China. Atmosphere, 14(7), 1068. https://doi.org/10.3390/atmos14071068