Average Turbulence Dynamics from a One-Parameter Kinetic Theory
Abstract
:1. Introduction
2. Basic Formulation
3. The Energy Equation
4. The Collision Term
5. Kinetic Representation of the Average Turbulence Dynamics
6. Discussion
6.1. Past Closure Attempts
6.2. Present Work
6.3. The Collision Term and the Relaxation Effects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saint-Venant, A.J.C. Formules et tables nouvelles pour les eaux courantes. Ann. Mines 1851, 20, 49. [Google Scholar]
- Boussinesq, L. Essai theorique sur les lois trouvees experimentalement par M. Bazin pour l’ecoulement uniforme de l’eau dans les canaux decouverts. CR Acad. Sci. Paris 1870, 71, 389–393. [Google Scholar]
- Reynolds, O. On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. Lond. 1894, A186, 123–161. [Google Scholar]
- Prandtl, L. Bericht uber Untersuchungen zur ausgebildeten. Z. Angew. Math. Mech. 1925, 5, 136–139. [Google Scholar] [CrossRef]
- Boltzmann, L. Weiere Studien uber das Warmegleichgewicht unter Gasmolekulen. Sitzungberichte Kais. Akad. Wiss. Wien Math.-Naturwiss. Classe 1872, 66, 275–370. [Google Scholar]
- Chen, H.; Orszag, S.; Staroselsky, I.; Succi, S. Expanded analogy between Boltzmann kinetic theory of fluids and turbulence. J. Fluid Mech. 2004, 519, 301. [Google Scholar] [CrossRef]
- Klimontovich, Y. The Statistical Theory of Non-Equilibrium Processes in a Plasma; M.I.T. Press: Cambridge, MA, USA, 1967. [Google Scholar]
- Wilcox, D. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 1993. [Google Scholar]
- Lesieur, M. Turbulence in Fluids, 3rd ed.; Kluwer Academic Publishers: Alphen am Rhein, The Netherlands, 1997. [Google Scholar]
- Speziale, C. On the nonlinear K-l and K-ϵ models of turbulence. J. Fluid Mech. 1987, 178, 459–467. [Google Scholar] [CrossRef]
- Yoshizawa, A. Statistical modeling of a transport-equation for the kinetic energy dissipation rate. Phys. Fluids 1987, 30, 628–631. [Google Scholar] [CrossRef]
- Rubinstein, R.; Barton, J.M. Nonlinear Reynolds stress models and the renormalization group. Phys. Fluids 1990, A2, 1472–1476. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.; Thangam, S.; Gatski, T.; Speziale, C. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 1992, 4, 1510–1520. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S.; Cowling, T. The Mathematical Theory of Non-Uniform Gases, 3rd ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Degond, P.; Lemou, M. Turbulence models for incompressible fluids derived from kinetic theory. J. Math. Fluid Mech. 2002, 4, 257–284. [Google Scholar] [CrossRef]
- Chen, H.; Staroselsky, I.; Yakhot, V. On non-perturbative formulation of hydrodynamics using kinetic theory. Phys. Scr. 2013, T155, 014040. [Google Scholar] [CrossRef]
- Chen, H.; Succi, S.; Orszag, S. Analysis of subgrid scale turbulence using the Boltzmann Bhatnagar-Gross-Krook kinetic equation. Phys. Rev. E 1999, 59, R2527–R2530. [Google Scholar] [CrossRef]
- Sreenivasan, K.R.; Yakhot, V. Dynamics of three-dimensional turbulence from Navier-Stokes equations. Phys. Rev. Fluids 2021, 6, 104604. [Google Scholar] [CrossRef]
- Sreenivasan, K.R.; Yakhot, V. Saturation of exponents and the asymptotic fourth state of turbulence. arXiv 2022, arXiv:208.09561. [Google Scholar]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision process in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 1954, 94, 511–525. [Google Scholar] [CrossRef]
- Prabhu, A.; Narasimha, R. Turbulent non-equilibrium wakes. J. Fluid Mech. 1972, 54, 19–38. [Google Scholar] [CrossRef]
- Borue, V.; Orszag, S.A. Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J. Fluid Mech. 1998, 366, 1–31. [Google Scholar] [CrossRef]
- Schmitt, F.G. About Boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation of its validity. Comptes Rendus Mec. 2007, 335, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Girimaji, S. Boltzmann kinetic equation for filtered fluid turbulence. Phys. Rev. Lett. 2007, 99, 034501. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S. Renormalization group analysis of turbulence, I. Basic theory. J. Sci. Comput. 1986, 1, 3–52. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Staroselsky, I.; Sreenivasan, K.R.; Yakhot, V. Average Turbulence Dynamics from a One-Parameter Kinetic Theory. Atmosphere 2023, 14, 1109. https://doi.org/10.3390/atmos14071109
Chen H, Staroselsky I, Sreenivasan KR, Yakhot V. Average Turbulence Dynamics from a One-Parameter Kinetic Theory. Atmosphere. 2023; 14(7):1109. https://doi.org/10.3390/atmos14071109
Chicago/Turabian StyleChen, Hudong, Ilya Staroselsky, Katepalli R. Sreenivasan, and Victor Yakhot. 2023. "Average Turbulence Dynamics from a One-Parameter Kinetic Theory" Atmosphere 14, no. 7: 1109. https://doi.org/10.3390/atmos14071109
APA StyleChen, H., Staroselsky, I., Sreenivasan, K. R., & Yakhot, V. (2023). Average Turbulence Dynamics from a One-Parameter Kinetic Theory. Atmosphere, 14(7), 1109. https://doi.org/10.3390/atmos14071109