Reinforcing the Effect of Warm Ocean Anomalies in the South China Sea on the Extended Tropical-Depression-Induced Heavy Rainfall Event in Hainan Island
Abstract
:1. Introduction
2. Data and Methods
3. Synoptic-Scale Atmospheric Conditions during the Heavy Rainfall Event
4. Warm Ocean Anomalies Contributing to the Formation and Intensification of the OCT10 TD
4.1. Oceanic Anomalies in the Sea Surface
4.2. Oceanic Anomalies in the Subsurface Layer
5. Composite Analysis
6. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, W.; Li, C.; Chan, J.C.L. The interdecadal variations of the summer monsoon rainfall over South China. Meteorol. Atmos. Phys. 2006, 93, 165–175. [Google Scholar] [CrossRef]
- Mao, J.; Chan, J.C.L.; Wu, G. Interannual variations of early summer monsoon rainfall over South China under different PDO backgrounds. Int. J. Climatol. 2011, 31, 847–862. [Google Scholar] [CrossRef]
- Fumin, R.; Gleason, B.; Easterling, D. Typhoon impacts on China’s precipitation during 1957–1996. Adv. Atmos. Sci. 2002, 19, 943–952. [Google Scholar]
- Feng, W.; Fu, S.H.; Wu, Y. Distribution characteristics of low level jet in north-central South China Sea and its formation mechanism. J. Trop. Meteor. 2015, 31, 247–254. (In Chinese) [Google Scholar]
- Feng, W.; Fu, S.H.; Zhao, F.Z. Circulation of extreme rainstorm and its anomalous characteristics during post-flood period of the last decade in Hainan Island. Meteorol. Mon. 2015, 41, 143–152. (In Chinese) [Google Scholar]
- Feng, W.; Zhou, L.L.; Xiao, C.; Fu, S.H. The spatial and temporal characteristics of the autumn flood season rainfall in Hainan Island and its associated circulation features. J. Trop. Meteorol. 2016, 32, 533–545. (In Chinese) [Google Scholar]
- Ma, X.K.; Fu, J.L.; Cao, D.B. Study on physical mechanism of persistent heavy rainfall event in autumn 2008 over Hainan. Meteorol. Mon. 2012, 38, 795–803. (In Chinese) [Google Scholar]
- Wu, Z.; Cao, J.; Zhao, W.; Ke, Y.; Li, X. An observational analysis of a persistent extreme precipitation event in the post-flood season over a tropical island in China. Atmosphere 2022, 13, 679. [Google Scholar] [CrossRef]
- Yokoi, S.; Mastsumoto, J. Collaborative effects of cold surge and tropical depression-type disturbance on heavy rainfall in central Vietnam. Mon. Weather Rev. 2008, 136, 3275–3287. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Fukutomi, Y.; Mastsumoto, J. An observational study of the extremely heavy rain event in northern Vietnam during 30 October–1 November 2008. J. Meteorol. Soc. Jpn. 2011, 89, 331–334. [Google Scholar] [CrossRef] [Green Version]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.Q.; Yu, H.; Ying, M.; Zhao, B.K.; Zhang, S.; Lin, L.M.; Bai, L.N.; Wan, R.J. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Emanuel, K.A. An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–604. [Google Scholar] [CrossRef]
- Harr, P.A.; Elsberry, R.L. Large-scale circulation variability over the tropical westen North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Weather Rev. 1995, 123, 1225–1246. [Google Scholar] [CrossRef]
- Mao, J.; Wu, G. Barotropic process contributing to the formation and growth of tropical cyclone Nargis. Adv. Atmos. Sci. 2011, 28, 483–491. [Google Scholar] [CrossRef]
- Gao, R.; Zhou, F. Monsoonal characteristics revealed by intraseasonal variability of Sea Surface Temperature (SST) in the South China Sea (SCS). Geophys. Res. Lett. 2002, 29, L1222. [Google Scholar] [CrossRef]
- Vaid, B.H.; Polito, P.S. Influence of the South China Sea biweekly sea surface temperature on the South China Sea summer monsoon especially during the Indian Ocean Dipole. Atmos. Ocean 2016, 54, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Achuthavarier, D.; Krishnamurthy, V. Daily modes of South Asian summer monsoon variability in the NCEP climate forecast system. Clim. Dyn. 2011, 36, 1941–1958. [Google Scholar] [CrossRef]
- Shahi, N.K.; Rai, S.; Pandey, D.K. Prediction of daily modes of South Asian monsoon variability and its association with Indian and Pacific Ocean SST in the NCEP CFS v2. Meteorol. Atmos. Phys. 2016, 128, 131–142. [Google Scholar] [CrossRef]
- Shahi, N.K.; Rai, S.; Shahi, A.K.; Abhilash, S. Intra-seasonal variability of the South Asian monsoon and its relationship with the Indo–Pacific sea-surface temperature in the NCEP CFSv2. Int. J. Climatol. 2018, 38, 28–47. [Google Scholar] [CrossRef]
- Lin, I.I.; Wu, C.C.; Pun, I.F.; Ko, D.S. Upper ocean thermal structure and the western North Pacific category-5 typhoons. Part I: Ocean features and category-5 typhoon’s intensification. Mon. Weather Rev. 2008, 136, 3288–3306. [Google Scholar] [CrossRef] [Green Version]
- Goni, G.J.; Trinanes, J.A. Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos Trans. Am. Geophys. Union 2003, 84, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.I.; Pun, I.F.; Wu, C.C. Upper ocean thermal structure and the western North Pacific category-5 typhoons. Part II: Dependence on translation speed. Mon. Weather Rev. 2009, 137, 3744–3757. [Google Scholar] [CrossRef]
- Lin, I.I.; Chen, C.H.; Pun, I.F.; Liu, W.T.; Wu, C.C. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett. 2009, 36, L03817. [Google Scholar] [CrossRef] [Green Version]
- Shay, L.K.; Goni, G.J.; Black, P.G. Effects of a warm oceanic feature on hurricane Opal. Mon. Weather Rev. 2000, 128, 1366–1383. [Google Scholar] [CrossRef]
- Leipper, D.; Volgenau, D. Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr. 1972, 2, 218–224. [Google Scholar] [CrossRef]
- Pun, I.-F.; Lin, I.I.; Wu, C.R.; Ko, D.S.; Liu, W.T. Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon intensity forecast. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1616–1630. [Google Scholar] [CrossRef]
- Wada, A.; Chan, J.C.L. Relationship between typhoon activity and upper ocean heat content. Geophys. Res. Lett. 2008, 35, L17603. [Google Scholar] [CrossRef] [Green Version]
- Wada, A.; Usui, N.; Sato, K. Relationship of maximum tropical cyclone intensity to sea surface temperature and tropical cyclone heat potential in the North Pacific Ocean. J. Geophys. Res. 2012, 117, D11118. [Google Scholar] [CrossRef]
- Emanuel, K.A. Thermodynamic control of hurricane intensity. Nature 1999, 401, 665–669. [Google Scholar] [CrossRef]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 Half Hourly 0.1 Degree × 0.1 Degree V06. Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2019. Available online: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary (accessed on 3 May 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview (accessed on 10 May 2023).
- Liu, J.; Lin, W.; Dong, X.; Lang, S.; Yun, R.; Zhu, D.; Zhang, K.; Sun, C.; Mu, B.; Ma, J.; et al. First results from the rotating fan beam scatterometer onboard CFOSAT. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8793–8806. [Google Scholar] [CrossRef]
- Hauser, D.; Tourain, C.; Hermozo, L.; Alraddawi, D.; Aouf, L.; Chapron, B.; Dalphinet, A.; Delaye, L.; Dalila, M.; Dormy, E.; et al. New observations from the SWIM radar on-board CFOSAT: Instrument validation and ocean wave measurement assessment. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5–26. [Google Scholar] [CrossRef]
- Gould, J.; Roemmich, D.; Wijffels, S.; Freeland, H.; Riser, S. Argo profiling floats bring new era of in situ ocean observations. Eos Trans. Am. Geophys. Union 2004, 85, 190–191. [Google Scholar] [CrossRef]
- Locarnini, R.A.; Mishonov, A.V.; Antonov, J.I.; Boyer, T.P.; Garcia, H.E.; Baranova, O.K.; Zweng, M.M.; Johnson, D.R. World Ocean Atlas 2009, Volume 1: Temperature; NOAA Atlas NESDIS 68; Levitus, S., Ed.; Government Printing Office: Washington, DC, USA, 2010; p. 184.
- Yu, L.; Weller, R.A. Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Am. Meteorol. Soc. 2010, 88, 527–539. [Google Scholar] [CrossRef] [Green Version]
- Lindzen, R.S.; Nigam, S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 1987, 44, 2418–2436. [Google Scholar] [CrossRef]
- Wu, G.; Guan, Y.; Liu, Y.; Yan, J.; Mao, J. Air–sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal. Clim. Dyn. 2012, 38, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Richard, A.D.; McBride, J.L. Sea surface temperature response to tropical cyclones. Mon. Weather Rev. 2011, 39, 3798–3808. [Google Scholar]
- Cione, J.J.; Uhlhorn, E.W. Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Weather Rev. 2003, 131, 1783–1796. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.I.; Wu, C.C.; Emanuel, K.A.; Lee, I.H.; Wu, C.R.; Pun, I.F. The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Weather Rev. 2005, 133, 2635–2649. [Google Scholar] [CrossRef]
- Su, J.; Xu, J.; Cai, S.; Wang, O. Gyres and eddies in the South China Sea. In Onset and Evolution of the South China Sea Monsoon and Its Interaction with the Ocean; Ding, Y., Li, C., Eds.; China Meteorological Press: Beijing, China, 1999; pp. 272–279. [Google Scholar]
- Fang, W.; Fang, G.; Shi, P.; Huang, Q.; Xie, Q. Seasonal structures of upper layer circulation in the southern south China sea from in situ observations. J. Geophys. Res. 2002, 107, 3202. [Google Scholar] [CrossRef]
- Wang, G.; Su, J.; Chu, P.C. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett. 2003, 30, 2121. [Google Scholar] [CrossRef] [Green Version]
Intensity Category | TD (10.8–17.1 m/s) | TS (17.2–24.4 m/s) | STS (24.5–32.6 m/s) | TY (32.7–41.4 m/s) | STY (41.5–50.9 m/s) | SuperTY (≥51.0 m/s) |
---|---|---|---|---|---|---|
Time (hours) | 78 | 108 | 138 | 168 | 204 | 240 |
Date | 19 September | 23 September | 27 September | 1 October | 5 October | 9 October | September (Climatology) | October (Climatology) |
---|---|---|---|---|---|---|---|---|
In situ D26 (m) | 76.2 | 100.3 | 96.5 | 88.2 | 81.0 | 78.9 | 52 | 40 |
∆D26 (m) | +24.1 | −3.8 | −8.3 | −7.2 | −2.1 | |||
In situ TCHP (KJ cm−2) | 101.2 | 131.4 | 124.0 | 108.4 | 97.1 | 95.7 | 47.5 | 33.5 |
∆TCHP (KJ cm−2) | +30.2 | −7.4 | −15.6 | −11.3 | −1.4 |
Date | Oceanic Condition | |
---|---|---|
1 | 19–21 October 1999 | Normal |
2 | 18–20 October 2000 | Normal |
3 | 12–14 October 2008 | Warm eddy |
4 | 11–13 October 2009 | Normal |
5 | 3–5 October 2010 | Warm eddy |
6 | 15–17 October 2010 | Warm eddy |
7 | 4–6 October 2011 | Normal |
8 | 14–16 October 2013 | Normal |
9 | 8–10 October 2015 | Normal |
10 | 12–14 October 2016 | Normal |
11 | 27–29 October 2020 | Normal |
12 | 13–15 October 2021 | Warm eddy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, S.; Chen, L.; Liu, X.; Liu, K.; Peng, W. Reinforcing the Effect of Warm Ocean Anomalies in the South China Sea on the Extended Tropical-Depression-Induced Heavy Rainfall Event in Hainan Island. Atmosphere 2023, 14, 1137. https://doi.org/10.3390/atmos14071137
Hao S, Chen L, Liu X, Liu K, Peng W. Reinforcing the Effect of Warm Ocean Anomalies in the South China Sea on the Extended Tropical-Depression-Induced Heavy Rainfall Event in Hainan Island. Atmosphere. 2023; 14(7):1137. https://doi.org/10.3390/atmos14071137
Chicago/Turabian StyleHao, Sai, Li Chen, Xiaoyan Liu, Kewei Liu, and Wei Peng. 2023. "Reinforcing the Effect of Warm Ocean Anomalies in the South China Sea on the Extended Tropical-Depression-Induced Heavy Rainfall Event in Hainan Island" Atmosphere 14, no. 7: 1137. https://doi.org/10.3390/atmos14071137
APA StyleHao, S., Chen, L., Liu, X., Liu, K., & Peng, W. (2023). Reinforcing the Effect of Warm Ocean Anomalies in the South China Sea on the Extended Tropical-Depression-Induced Heavy Rainfall Event in Hainan Island. Atmosphere, 14(7), 1137. https://doi.org/10.3390/atmos14071137