Wave Climate Variability along the Coastlines of Senegal over the Last Four Decades
Abstract
:1. Introduction
2. Study Area
2.1. General Description
2.2. Waves Characteristics and Coastal Hydrodynamic
3. Methodology
3.1. WaveWatch III Model Description
3.2. Forcing Fields: Wind Forcings, Bathymetry and Topography
3.3. Model Implementation
3.4. Wave Data Source
3.5. Model Validation and the Wave Climate Analysis
4. Results
4.1. Model Predictive Skills
4.2. Description of Wave Climate
4.2.1. Mean and Extreme Conditions
4.2.2. Seasonal Variability
4.2.3. Long-Term Trends
5. The Control of Atlantic Climate Modes on Wave Climate Variability on the Senegalese Coast
5.1. The North Atlantic Oscillation (NAO)
5.2. East Atlantic Mode (EA)
5.3. South Atlantic Oscillation (SAM)
6. Discussion and Conclusions
6.1. Limitations of the Present Model
6.2. Dakar Peculiarity in the Coastal Morphology
6.3. The Wave Climate Control by Atlantic Modes of Variability
6.4. Long-Term Trends on Wave Parameters and Climate Modes, Comparative Evolution and Future Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and lowlying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Niang, N.A. Dynamique Socio-Environnementale et Gestion des Ressources Halieutiques des Régions Côtières du Sénégal: L’exemple de la Pêche Artisanale. Ph.D. Thesis, Université de Rouen, Rouen, France, 2009; 302p. [Google Scholar]
- Bertin, X.; Bruneau, N.; Breihl, J.F.; Fortunato, A.B.; Karpytchev, M. Importance of wave ag and resonance in storm surges: The case of Xynthia, Bay of Biscay. Ocean Model. 2011, 42, 16–30. [Google Scholar] [CrossRef]
- Sadio, M.; Anthony, E.J.; Diaw, A.T.; Dussouillez, P.; Fleury, J.T.; Kane, A.; Almar, R.; Kestenare, E. Shoreline Changes on the Wave-Influenced Senegal River Delta, West Africa: The Roles of Natural Processes and Human Interventions. Water 2017, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- WACA. Un Littoral Résilient, des Communautés Résilientes, Rapport Annuel 2020; Programme de Gestion du Littoral Ouest-Africain; World Bank Group: Washington, DC, USA, 2020; 80p. [Google Scholar]
- Sadio, M.; Sakho, I.; Samou, S.M.; Gueye, A.; Diouf, M.B.; Deloffre, J. Multi-decadal dynamics of the Saloum River delta mouth in climate change context. J. Afr. Earth Sci. 2022, 187, 104451. [Google Scholar] [CrossRef]
- Almar, R.; Kestenare, E.; Boucharel, J. On the key influence of remote climate variability from Tropical Cyclones, North and South Atlantic mid-latitude storms on the Senegalese coast (West Africa). Environ. Res. Commun. 2019, 1, 071001. [Google Scholar] [CrossRef] [Green Version]
- Reguero, B.G.; Losada, I.; Mendez, F. A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun. 2019, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakho, I.; Sadio, M.; Camara, I.; Noblet, M.; Seck, A.; Saengsupavanich, C.; Ndour, A.; Diouf, M.B. Sea level rise and future shoreline changes along the sandy coast of Saloum Delta, Senegal. Arab. J. 2022, 15, 1547. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Clarke, J.; Ranasinghe, R.; Reimann, L.; Khalaf, N.; Duong, T.M.; Simpson, N.P. African heritage sites threatened as sea-level rise accelerates. Nat. Clim. Change 2022, 12, 256–262. [Google Scholar] [CrossRef]
- Cissé, C.O.T.; Almar, R.; Youm, J.P.M.; Jolicoeur, S.; Taveneau, A.; Sy, B.A.; Sakho, I.; Sow, B.A.; Dieng, H. Extreme Coastal Water Levels Evolution at Dakar (Senegal, West Africa). Climate 2023, 11, 6. [Google Scholar] [CrossRef]
- Dodet, G.; Bertin, X.; Taborda, R. Wave climate variability in the north-east Atlantic Ocean over the last six decades. Ocean Modell. 2010, 31, 120–131. [Google Scholar] [CrossRef]
- Reguero, B.G. Numerical Modeling of the Global Wave Climate Variability and Associated Environmental and Technological Risks. Ph.D. Thesis, Universidad de Cantabria, Spain, Santader, December 2012; pp. 65–123. [Google Scholar]
- Bertin, X.; Prouteau, E.; Letetrel, C. A significant increase in wave height in the North Atlantic Ocean over the 20th century. Glob. Planet. Change 2013, 106, 77–83. [Google Scholar] [CrossRef]
- Marshall, A.G.; Hemer, M.A.; Hendon, H.H.; McInnes, K.L. Southern annular mode impacts on global ocean surface waves. Ocean Model. 2018, 129, 58–74. [Google Scholar] [CrossRef]
- Oliver, B.; Veitch, J.; Reason, C.J.C. Variability in high wave energy events around the southern African coast. J. Geophys. Res. Ocean. 2022, 127, e2021JC018255. [Google Scholar] [CrossRef]
- Dahunsi, A.; Bonou, F.; Olusegun, D.; Ezinvi, B. A Spatio-Temporal Trend of Past and Future Extreme Wave Climates in the Gulf of Guinea Driven by Climate. J. Mar. Sci. Eng. 2022, 10, 1581. [Google Scholar] [CrossRef]
- Osinowo, A.; Okogbue, E.; Eresanya, E.; Akande, S. Extreme significant wave height climate in the Gulf of Guinea. Afr. J. Mar. Sci. 2018, 40, 407–421. [Google Scholar] [CrossRef]
- Young, I.; Zieger, S.; Babanin, A. Global Trends in Wind Speed and Wave Height. Science 2011, 332, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, B.W.; Gommenginger, C.P.; Dodet, G.; Bidlot, J.R. Global wave height trends and variability from new multimission satellite altimeter products, reanalyses, and wave buoys. Geophys. Res. Lett. 2020, 47, e2019GL086880. [Google Scholar] [CrossRef]
- Izaguirre, C.; Méndez, F.J.; Menéndez, M.; Losada, I.J. Global extreme wave height variability based on satellite data. Geophys. Res. Lett. 2011, 38, L10607. [Google Scholar] [CrossRef]
- Kumar, P.; Min, S.; Weller, E.; Lee, H.; Wang, X. Influence of Climate Variability on Extreme Ocean Surface Wave Heights Assessed from ERA-Interim and ERA-20C. J. Clim. 2016, 29, 4031–4046. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kaur, S.; Weller, E.; Min, S.K. Influence of natural climate variability on the extreme ocean surface wave heights over the Indian Ocean. J. Geophys. Res. Oceans 2019, 124, 6176–6199. [Google Scholar] [CrossRef]
- Patra, A.; Min, S.K.; Seong, M.G. Climate variability impacts on global extreme wave heights: Seasonal assessment using satellite data and ERA5 reanalysis. J. Geophys. Res. Oceans 2020, 125, e2020JC016754. [Google Scholar] [CrossRef]
- Cassou, C.; Cherchi, A.; Kosaka, Y. IPCC. Annex IV: Modes of Variability. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 2153–2192. [Google Scholar] [CrossRef]
- Bacon, S.; Carter, D.J.T. A connection between mean wave height and atmospheric pressure gradient in the North Atlantic Int. J. Climatol. 1993, 13, 423–436. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushnir, Y.; Cardone, V.J.; Greenwood, J.G.; Cane, M.A. The recent increase in North Atlantic Wave Heights. J. Clim. 1997, 10, 2107–2113. [Google Scholar] [CrossRef]
- Woolf, D.K.; Cotton, P.D.; Challenor, P.G. Variability and predictability of the North Atlantic wave climate. J. Geophys. Res. 2002, 107, 3145. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An overview of the North Atlantic oscillation. Geophys. Monogr. Am. Geophys. Union 2003, 134, 1–36. [Google Scholar]
- Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. Increased winter-mean wave height, variability, and periodicity in the Northeast Atlantic over 1949–2017. Geophys. Res. Lett. 2018, 45, 3586–3596. [Google Scholar] [CrossRef] [Green Version]
- Morales-Márquez, V.; Orfila, A.; Simarro, G.; Marcos, M. Extreme waves and climatic patterns of variability in the eastern North Atlantic and Mediterranean basins. Ocean Sci. 2020, 16, 1385–1398. [Google Scholar] [CrossRef]
- Hochet, A.; Dodet, G.; Ardhuin, F.; Hemer, M.; Young, I. Sea State Decadal Variability in the North Atlantic: A Review. Climate 2021, 9, 173. [Google Scholar] [CrossRef]
- Marshall, G.J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Hemer, M.; Chruch, J.A.; Hunter, J.R. Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol. 2010, 30, 475–491. [Google Scholar] [CrossRef]
- Hemer, M.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Change 2013, 3, 471–476. [Google Scholar]
- Barnard, P.; Short, A.; Harley, M.; Splinter, K.D.; Vitousek, S.; Turner, I.L.; Allan, J.; Banno, M.; Bryan, K.R.; Doria, A.; et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci. 2015, 8, 801–807. [Google Scholar] [CrossRef]
- Izaguirre, C.; Mendez, F.J.; Menedez, M.; Luceno, A.; Losada, I.J. Extreme wave climate variability in Southern Europe using satellite data. J. Geophys. Res. 2010, 115, C04009. [Google Scholar] [CrossRef]
- Shimura, T.; Mori, N.; Mase, H. Ocean Waves and Teleconnection Patterns in the Northern Hemisphere. J. Clim. 2013, 26, 8654–8670. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Asensio, A.; Tsimplis, M.N.; Marcos, M.; Feng, X.; Gomis, D.; Jordà, G.; Josey, S.A. Response of the North Atlantic wave climate to atmospheric modes of variability. Int. J. Climatol. 2016, 36, 1210–1225. [Google Scholar] [CrossRef]
- Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly. Geophys. Res. Lett. 2017, 44, 1384–1392. [Google Scholar] [CrossRef] [Green Version]
- Almar, R.; Kestenare, E.; Reyns, J.; Jouanno, J.; Anthony, E.J.; Laibi, R.; Hemer, M.; Du Penhoat, Y.; Ranasinghe, R. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part1: Wave climate variability and impacts on the longshore sediment transport. Cont. Shelf Res. 2015, 110, 48–59. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Winant, C.D.; Dorman, C.E.; Friehe, C.A.; Beardsley, R.C. The marine layer off northern California: An example of supercritical channel flow. J. Atmos. Sci. 1988, 45, 3588–3605. [Google Scholar] [CrossRef]
- Colosi, L.V.; Villas Bôas, A.B.; Gille, S.T. The seasonal cycle of significant wave height in the ocean: Local versus remote forcing. J. Geophys. Res. Oceans 2021, 126, e2021JC017198. [Google Scholar] [CrossRef]
- Diaw, A.T. Morphométrie du littoral sénégalais et gambien. Notes Afr. Dakar 1984, 183, 58–63. [Google Scholar]
- CSE. Rapport Sur l’état de L’Environnement au Sénégal, Edition 2005; Ministère de l’Environnement et de la Protection de la Nature: Dakar, Senegal, 2005; 231p. [Google Scholar]
- Niang, D.I. L’érosion Sur la Petite Côte du Sénégal à Partir de L’Exemple de Rufisque: Passé-Présent-Futur. Ph.D. Thesis, Université D’Angers, Angers, France, 1995; 317p. [Google Scholar]
- Guilcher, A.; Nicholas, J.P. Observation sur la Langue de Barbarie et les bras du Sénégal aux environs de Saint-Louis. Bull. D’inf. Com. Océanogr. Etudes Côtières 1954, 6, 227–242. (In French) [Google Scholar]
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH-III, Version 1.15; NOAA/NWS/NCEP/OMB Technical Note 151; US Department of Commerce: Washington, DC, USA, 1997; 97p.
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH-III, Version 1.18; NOAA/NWS/NCEP/OMB Technical Note 166; US Department of Commerce: Washington, DC, USA, 1999; 110p.
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH III, Version 3.14; NOAA/NWS/NCEP/MMAB Technical Note 276; US Department of Commerce: Washington, DC, USA, 2009; 194p.
- Wamdi Group. The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamic and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1994; 532p. [Google Scholar]
- Bidlot, J.R.; Holt, M.W. Verification of Operational Global and Regional Wave Forecasting Systems Against Measurements from Moored Buoys; JCOMM Technical Report 30; WMO & IOC: Geneva, Switzerland, 2006. [Google Scholar] [CrossRef]
- Yanenko, N.N. The Method of Fractional Steps, the Solution of Problems of Mathematical Physics in Several Variables; Springer: Berlin/Heidelberg, Germany, 1971. [Google Scholar] [CrossRef]
- Tolman, H.L.; Booij, N. Modeling wind waves using wavenumber direction spectra and a variable wavenumber grid. Glob. Atmos. Ocean Syst. 1998, 6, 295–309. [Google Scholar]
- WaveWatch III R© Development Group. User Manual and System Documentation of WAVEWATCH III, Version 6.07; US Department of Commerce: Washington, DC, USA, 2019.
- GEBCO. 2019. Available online: https://download.gebco.net/ (accessed on 1 October 2020).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Alday, M.; Ardhuin, F.; Accensi, M.; Dodet, G. A global wave parameter database for geophysical applications. Part 3: Improved forcing and spectral resolution. Ocean. Model. 2021, 166, 101848. [Google Scholar] [CrossRef]
- Pineau-Guillou, L.; Ardhuin, F.; Bouin, M.N.; Redelsperger, J.L.; Chapron, B.; Bidlot, J.; Quilfen, Y. Strong winds in a coupled wave-atmosphere model during a north Atlantic storm event: Evaluation against observations. Q. J. R. Meteorol. Soc. 2018, 144, 317–332. [Google Scholar] [CrossRef] [Green Version]
- Benetazzo, A.; Barbariol, F.; Davison, S.; Sclavo, M.; Favaretto, C.; Mercogliano, P. Correction of ERA5 Wind for Regional Climate Projections of Sea Waves. Water 2022, 14, 1590. [Google Scholar] [CrossRef]
- Campos, R.M.; Gramcianinov, C.B.; de Camargo, R.; da Silva Dias, P.L. Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data. Remote Sens. 2022, 14, 4918. [Google Scholar] [CrossRef]
- Hasselmann, S.; Hasselmann, K.; Allender, J.; Barnett, T. Computation and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr. 1985, 15, 1378–1391. [Google Scholar] [CrossRef]
- Goring, D.G.; Nikora, V.I. Despiking acoustic doppler velocimeter data. J. Hydraul. Eng. 2002, 128, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Comas-Bru, L.; Hernández, A. Reconciling North Atlantic climate modes: Revised monthly indices for the East Atlantic and the Scandinavian patterns beyond the 20th century. Earth Syst. Sci. Data 2018, 10, 2329–2344. [Google Scholar] [CrossRef] [Green Version]
- Alday, M.; Ardhuin, F.; Dodet, G.; Accensi, M. Accuracy of numerical wave model results: Application to the Atlantic coasts of Europe. Ocean Sci. 2022, 18, 1665–1689. [Google Scholar] [CrossRef]
- Reguero, B.G.; Méndez, F.J.; Losada, I.J. Variability of multivariate wave climate in Latin America and the Caribbean. Glob. Planet. Change 2013, 100, 70–84. [Google Scholar] [CrossRef]
- Lavaud, L.; Bertin, X.; Martins, K.; Pezerat, M.; Coulombier, T.; Dausse, D. Wave dissipation and mean circulation on a shore platform under storm wave conditions. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006466. [Google Scholar] [CrossRef]
- Guerin, K. Dynamics of the Sandy Coastline from Thiaroye to Bargny (Bay of Goree-Senegal). Master’s Thesis, University of Paris 1-Sorbonne-Panthéon, Paris, France, 2003; 198p. [Google Scholar]
- Hemer, M.A. Historical trends in Southern Ocean storminess: Long-term variability of extreme wave heights at Cape Sorell, Tasmania. Geophys. Res. Lett. 2010, 37, L18601. [Google Scholar] [CrossRef]
- Tracy, F.T.; Tracy, B.; Resio, D.T. ERDC MSRC Resource; Technical Report Fall 2006; US Army Corps of Engineers: Washington, DA, USA, 2006.
- Bunney, C.C.; Saulter, A.; Palmer, T. Reconstruction of Complex 2D Wave Spectra for Rapid Deployment of Nearshore Wave Models, in Marine Structures and Breakwaters; Institute of Civil Engineers Publishing: London, UK, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samou, M.S.; Bertin, X.; Sakho, I.; Lazar, A.; Sadio, M.; Diouf, M.B. Wave Climate Variability along the Coastlines of Senegal over the Last Four Decades. Atmosphere 2023, 14, 1142. https://doi.org/10.3390/atmos14071142
Samou MS, Bertin X, Sakho I, Lazar A, Sadio M, Diouf MB. Wave Climate Variability along the Coastlines of Senegal over the Last Four Decades. Atmosphere. 2023; 14(7):1142. https://doi.org/10.3390/atmos14071142
Chicago/Turabian StyleSamou, Marcellin Seujip, Xavier Bertin, Issa Sakho, Alban Lazar, Mamadou Sadio, and Mouhamadou Bachir Diouf. 2023. "Wave Climate Variability along the Coastlines of Senegal over the Last Four Decades" Atmosphere 14, no. 7: 1142. https://doi.org/10.3390/atmos14071142
APA StyleSamou, M. S., Bertin, X., Sakho, I., Lazar, A., Sadio, M., & Diouf, M. B. (2023). Wave Climate Variability along the Coastlines of Senegal over the Last Four Decades. Atmosphere, 14(7), 1142. https://doi.org/10.3390/atmos14071142