Why Does a Stronger El Niño Favor Developing towards the Eastern Pacific while a Stronger La Niña Favors Developing towards the Central Pacific?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Method
3. Asymmetric Features of ENSO Spatial Structure
3.1. Composite Analysis of SST Anomaly
3.2. Temperature Skewness
4. The Physical Causes of the Spatial Structure Asymmetry between El Niño and La Niña
5. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horel, J.D.; Wallace, J.M. Planetary-Scale Atmospheric Phenomena Associated with the Southern Oscillation. Mon. Weather Rev. 1981, 109, 813–829. [Google Scholar] [CrossRef]
- Philander, S.G.H. El Niño Southern Oscillation Phenomena. Nature 1983, 302, 295–301. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Hsu, P. Dynamics of El Niño–Southern Oscillation. In Fundamentals of Tropical Climate Dynamics; Springer Atmospheric Sciences; Springer International Publishing: Cham, Switzerland, 2018; pp. 149–183. ISBN 978-3-319-59595-5. [Google Scholar]
- Capotondi, A.; Wittenberg, A.T.; Newman, M.; Di Lorenzo, E.; Yu, J.-Y.; Braconnot, P.; Cole, J.; Dewitte, B.; Giese, B.; Guilyardi, E.; et al. Understanding ENSO Diversity. Bull. Am. Meteorol. Soc. 2015, 96, 921–938. [Google Scholar] [CrossRef] [Green Version]
- Timmermann, A.; An, S.-I.; Kug, J.-S.; Jin, F.-F.; Cai, W.; Capotondi, A.; Cobb, K.M.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño–Southern Oscillation Complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Luo, X.; Yang, Y.-M.; Sun, W.; Cane, M.A.; Cai, W.; Yeh, S.-W.; Liu, J. Historical Change of El Niño Properties Sheds Light on Future Changes of Extreme El Niño. Proc. Natl. Acad. Sci. USA 2019, 116, 22512–22517. [Google Scholar] [CrossRef] [Green Version]
- Hoerling, M.P.; Kumar, A.; Zhong, M. El Niño, La Niña, and the Nonlinearity of Their Teleconnections. J Clim. 1997, 10, 1769–1786. [Google Scholar] [CrossRef]
- Frauen, C.; Dommenget, D.; Tyrrell, N.; Rezny, M.; Wales, S. Analysis of the Nonlinearity of El Niño–Southern Oscillation Teleconnections. J. Clim. 2014, 27, 6225–6244. [Google Scholar] [CrossRef] [Green Version]
- Hannachi, A.; Stephenson, D.B.; Sperber, K.R. Probability-Based Methods for Quantifying Nonlinearity in the ENSO. Clim. Dyn. 2004, 22, 69–70. [Google Scholar] [CrossRef]
- An, S.-I.; Jin, F.-F. Nonlinearity and Asymmetry of ENSO. J. Clim. 2004, 17, 2399–2412. [Google Scholar] [CrossRef]
- Su, J.; Zhang, R.; Li, T.; Rong, X.; Kug, J.-S.; Hong, C.-C. Causes of the El Niño and La Niña Amplitude Asymmetry in the Equatorial Eastern Pacific. J. Clim. 2010, 23, 605–617. [Google Scholar] [CrossRef]
- Frauen, C.; Dommenget, D. El Niño and La Niña Amplitude Asymmetry Caused by Atmospheric Feedbacks: Atmospheric Causes for Enso Asymmetry. Geophys. Res. Lett. 2010, 37, L18801. [Google Scholar] [CrossRef] [Green Version]
- Kessler, W.S. Is ENSO a Cycle or a Series of Events? Geophys. Res. Lett. 2002, 29, 40-1–40-44. [Google Scholar] [CrossRef] [Green Version]
- Larkin, N.K.; Harrison, D.E. ENSO Warm (El Niño) and Cold (La Niña) Event Life Cycles: Ocean Surface Anomaly Patterns, Their Symmetries, Asymmetries, and Implications. J. Clim. 2002, 15, 1118–1140. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zhang, X. Asymmetry in Zonal Phase Propagation of ENSO Sea Surface Temperature Anomalies. Geophys. Res. Lett. 2009, 36, L13703. [Google Scholar] [CrossRef] [Green Version]
- Okumura, Y.M.; Deser, C. Asymmetry in the Duration of El Niño and La Niña. J. Clim. 2010, 23, 5826–5843. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Li, T.; Shen, X.; Wu, B. Relative Roles of Dynamic and Thermodynamic Processes in Causing Evolution Asymmetry between El Niño and La Niña. J. Clim. 2016, 29, 2201–2220. [Google Scholar] [CrossRef]
- Wu, X.; Okumura, Y.M.; DiNezio, P.N. What Controls the Duration of El Niño and La Niña Events? J. Clim. 2019, 32, 5941–5965. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and Its Possible Teleconnection. J. Geophys. Res. 2007, 112, C11007. [Google Scholar] [CrossRef]
- Kao, H.-Y.; Yu, J.-Y. Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Kug, J.-S.; Jin, F.-F.; An, S.-I. Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. J. Clim. 2009, 22, 1499–1515. [Google Scholar] [CrossRef]
- Schopf, P.S.; Burgman, R.J. A Simple Mechanism for ENSO Residuals and Asymmetry. J. Clim. 2006, 19, 3167–3179. [Google Scholar] [CrossRef]
- Capotondi, A.; Wittenberg, A.T.; Kug, J.; Takahashi, K.; McPhaden, M.J. ENSO Diversity. In Geophysical Monograph Series; McPhaden, M.J., Santoso, A., Cai, W., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 65–86. ISBN 978-1-119-54816-4. [Google Scholar]
- Kug, J.-S.; Ham, Y.-G. Are There Two Types of La Nina?: Two Types of la Nina. Geophys. Res. Lett. 2011, 38, L16704. [Google Scholar] [CrossRef]
- Takahashi, K.; Dewitte, B. Strong and Moderate Nonlinear El Niño Regimes. Clim. Dyn. 2016, 46, 1627–1645. [Google Scholar] [CrossRef] [Green Version]
- Battisti, D.S.; Hirst, A.C. Interannual Variability in a Tropical Atmosphere–Ocean Model: Influence of the Basic State, Ocean Geometry and Nonlinearity. J. Atmospheric Sci. 1989, 46, 1687–1712. [Google Scholar] [CrossRef]
- Galanti, E.; Tziperman, E.; Harrison, M.; Rosati, A.; Giering, R.; Sirkes, Z. The Equatorial Thermocline Outcropping—A Seasonal Control on the Tropical Pacific Ocean–Atmosphere Instability Strength. J. Clim. 2002, 15, 2721–2739. [Google Scholar] [CrossRef]
- Yu, J.-Y.; Liu, W.T. A Linear Relationship between ENSO Intensity and Tropical Instability Wave Activity in the Eastern Pacific Ocean: Relationship between Enso and Tiws. Geophys. Res. Lett. 2003, 30, 1735. [Google Scholar] [CrossRef] [Green Version]
- An, S.-I. Interannual Variations of the Tropical Ocean Instability Wave and ENSO. J. Clim. 2008, 21, 3680–3686. [Google Scholar] [CrossRef] [Green Version]
- Timmermann, A. A Nonlinear Mechanism for Decadal El NiñO Amplitude Changes. Geophys. Res. Lett. 2002, 29, 1003. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Carton, J.A.; Giese, B.S. A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev. 2008, 136, 2999–3017. [Google Scholar] [CrossRef] [Green Version]
- Behringer, D.W. The Global Ocean Data Assimilation System (GODAS) at NCEP. In Proceedings of the 11th symposium on integrated observing and assimilation systems for the atmosphere, oceans, and land surface, San Antonio, TX, USA, 14–18 January 2007. [Google Scholar]
- Zuo, H.; Balmaseda, M.A.; Mogensen, K.; Tietsche, S. OCEAN5: The ECMWF Ocean Reanalysis System and its Real-Time Analysis Component; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2018; p. 44. [Google Scholar]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project: The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- White, G.H. Skewness, kurtosis and extreme values of northern hemisphere geopotential heights. Mon. Weather. Rev. 1980, 108, 1446–1455. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Lu, E.; Wang, D. Relative Role of Dynamic and Thermodynamic Processes in the Development of the Indian Ocean Dipole: An OGCM Diagnosis: Dynamic and thermodynamic processes. Geophys. Res. Lett. 2002, 29, 25-1–25-4. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, T.; Yu, Y. Causes of Strengthening and Weakening of ENSO Amplitude under Global Warming in Four CMIP5 Models. J. Clim. 2015, 28, 3250–3274. [Google Scholar] [CrossRef]
- Chen, L.; Li, T.; Yu, Y.; Behera, S.K. A Possible Explanation for the Divergent Projection of ENSO Amplitude Change under Global Warming. Clim. Dyn. 2017, 49, 3799–3811. [Google Scholar] [CrossRef]
- Pan, X.; Li, T.; Chen, M. Change of El Niño and La Niña Amplitude Asymmetry around 1980. Clim. Dyn. 2020, 54, 1351–1366. [Google Scholar] [CrossRef]
- Wu, B.; Li, T.; Zhou, T. Asymmetry of Atmospheric Circulation Anomalies over the Western North Pacific between El Niño and La Niña. J. Clim. 2010, 23, 4807–4822. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.-C.; Li, T. The independence of SST skewness to thermocline feedback in the eastern equatorial Indian Ocean. Geophys. Res. Lett. 2010, 37, L11702. [Google Scholar] [CrossRef] [Green Version]
Strong Year | Weak Year | |
---|---|---|
El Niño | 1965, 1972, 1982, 1986, 1991, 1994, 1997, 2009, 2015 | 1963, 1968, 1976, 1977, 1987, 2002, 2006, 2014, 2018, 2019 |
La Niña | 1970, 1973, 1975, 1988, 1999, 2007, 2010 | 1962, 1964, 1966, 1967, 1971, 1974, 1983, 1984, 1995, 2000, 2005, 2008, 2011, 2017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Li, T.; Jiang, L. Why Does a Stronger El Niño Favor Developing towards the Eastern Pacific while a Stronger La Niña Favors Developing towards the Central Pacific? Atmosphere 2023, 14, 1185. https://doi.org/10.3390/atmos14071185
Yu J, Li T, Jiang L. Why Does a Stronger El Niño Favor Developing towards the Eastern Pacific while a Stronger La Niña Favors Developing towards the Central Pacific? Atmosphere. 2023; 14(7):1185. https://doi.org/10.3390/atmos14071185
Chicago/Turabian StyleYu, Jiahui, Tim Li, and Leishan Jiang. 2023. "Why Does a Stronger El Niño Favor Developing towards the Eastern Pacific while a Stronger La Niña Favors Developing towards the Central Pacific?" Atmosphere 14, no. 7: 1185. https://doi.org/10.3390/atmos14071185
APA StyleYu, J., Li, T., & Jiang, L. (2023). Why Does a Stronger El Niño Favor Developing towards the Eastern Pacific while a Stronger La Niña Favors Developing towards the Central Pacific? Atmosphere, 14(7), 1185. https://doi.org/10.3390/atmos14071185