Agricultural Water Deficit Trends in Yemen
Abstract
:1. Introduction
2. Data Sources and Methods
3. Results and Discussion
3.1. Country-Level Terrestrial Water Budget Variability
3.2. Regional-Level Terrestrial Water Budget Variability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Y. China’s water scarcity. J. Environ. Manag. 2009, 90, 3185–3196. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Gerlak, A.K. Beyond the basin: Water security in transboundary environments. Water Secur. 2022, 17, 100124. [Google Scholar] [CrossRef]
- Anik, A.H.; Sultan, M.B.; Alam, M.; Parvin, F.; Ali, M.M.; Tareq, S.M. The impact of climate change on water resources and associated health risks in Bangladesh: A review. Water Secur. 2023, 18, 100133. [Google Scholar] [CrossRef]
- IPCC. Climate Change: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 1457–1579. [Google Scholar] [CrossRef]
- FAO. AQUASTAT Core Database. Food and Agriculture Organization of the United Nations. 2022. Available online: http://www.fao.org/aquastat/en/ (accessed on 1 March 2023).
- Ide, T.; Lopez, M.R.; Fröhlich, C.; Scheffran, J. Pathways to water conflict during drought in the MENA region. J. Peace Res. 2021, 58, 568–582. [Google Scholar] [CrossRef]
- Nisa, Z.; Govind, A. Long-Term Terrestrial Water Budget Estimates over the Middle East North Africa Region. CGIAR Initiative on Climate Resilience. 2022. Available online: https://cgspace.cgiar.org/handle/10568/127844 (accessed on 20 March 2023).
- El Kenawy, A.; McCabe, M.; Vicente-Serrano, S.; Robaa, S.; Lopez-Moreno, J. Recent changes in continentality and aridity conditions over the Middle East and North Africa region, and their association with circulation patterns. Clim. Res. 2016, 69, 25–43. [Google Scholar] [CrossRef] [Green Version]
- Göll, E. Future Challenges of Climate Change in the MENA Region. Future Notes No. 7. 2017. Available online: https://research.fit.edu/media/site-specific/researchfitedu/coast-climate-adaptation-library/africa/regional---africa/G%C3%83ll.--2017.--Future-Challenges-of-CC-in-the-Mena-Region.pdf (accessed on 25 February 2023).
- Barredo, J.I.; Mauri, A.; Caudullo, G.; Dosio, A. Assessing shifts of Mediterranean and arid climates under RCP4. 5 and RCP8. 5 climate projections in Europe. In Meteorology and Climatology of the Mediterranean and Black Seas; Birkhäuser: Cham, Switherland, 2019; pp. 235–251. [Google Scholar]
- Tramblay, Y.; Llasat, M.C.; Randin, C.; Coppola, E. Climate change impacts on water resources in the Mediterranean. Reg. Environ. Chang. 2020, 20, 83. [Google Scholar] [CrossRef]
- Gonzalez, R.; Ouarda, T.B.M.J.; Marpu, P.R.; Allam, M.M.; Eltahir, E.A.B.; Pearson, S. Water Budget Analysis in Arid Regions, Application to the United Arab Emirates. Water 2016, 8, 415. [Google Scholar] [CrossRef] [Green Version]
- Soltani, S.S.; Ataie-Ashtiani, B.; Danesh-Yazdi, M.; Simmons, C.T. A probabilistic framework for water budget estimation in low runoff regions: A case study of the central Basin of Iran. J. Hydrol. 2020, 586, 124898. [Google Scholar] [CrossRef]
- Guppy, L.; Alnabhani, S. Water-related Conflict Assessment Report Resilience; Programme in the Irrigation and Agricultural Sector. 2022. Available online: https://rb.gy/zgrq2 (accessed on 2 July 2023).
- Glass, N. The Water Crisis in Yemen: Causes, Consequences and Solutions. Glob. Major. E-J. 2010, 1, 17–30. Available online: https://www.american.edu/cas/economics/ejournal/upload/glass_accessible.pdf (accessed on 1 July 2023).
- UPI. Yemen’s Water Crisis a Mideast Warning. 2009. Available online: https://bit.ly/3PNULlv (accessed on 2 July 2023).
- FAO. Yemen Emergency. 2022. Available online: https://bit.ly/40GpmG8 (accessed on 30 March 2023).
- Almas, A.A.M.; Scholz, M. Agriculture and Water Resources Crisis in Yemen: Need for Sustainable Agriculture. J. Sustain. Agric. 2006, 28, 55–75. [Google Scholar] [CrossRef]
- Varisco, D. Pumping Yemen Dry: A History of Yemen’s Water Crisis. Hum. Ecol. 2019, 47, 317–329. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemenkova, P. Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data. Geosciences 2022, 12, 140. [Google Scholar] [CrossRef]
- Wiwoho, B.S.; Astuti, I.S. Runoff observation in a tropical Brantas watershed as observed from long-term globally available TerraClimate data 2001–2020. Geoenviron. Disasters 2022, 9, 12. [Google Scholar] [CrossRef]
- Filgueiras, R.; Venancio, L.P.; Aleman, C.C.; da Cunha, F.F. Comparison and calibration of terraclimate climatological variables over the Brazilian territory. J. S. Am. Earth Sci. 2022, 117, 103882. [Google Scholar] [CrossRef]
- Cepeda Arias, E.; Cañon Barriga, J. Performance of high-resolution precipitation datasets CHIRPS and TerraClimate in a Colombian high Andean Basin. Geocarto Int. 2022, 37, 17382–17402. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, X. Climate change impacts on global agricultural water deficit. Geophys. Res. Lett. 2013, 40, 1111–1117. [Google Scholar] [CrossRef]
- Stephenson, N. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. 1998, 25, 855–870. [Google Scholar] [CrossRef]
- Flint, L.E.; Flint, A.L.; Thorne, J.H. Climate change: Evaluating your local and regional water resources. US Geol. Surv. (USGS) Fact Sheet 2015, 3098, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yin, D.; Li, Q.; Li, X.; Zhu, R. Annual water deficit in response to climate variabilities across the globe. Environ. Res. Lett. 2022, 17, 054021. [Google Scholar] [CrossRef]
- Wang-Erlandsson, L.; Bastiaanssen, W.G.M.; Gao, H.; Jägermeyr, J.; Senay, G.B.; van Dijk, A.I.J.M.; Guerschman, J.P.; Keys, P.W.; Gordon, L.J.; Savenije, H.H.G. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 2016, 20, 1459–1481. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Sensitivity of evapotranspiration to climatic change in different climates. Glob. Planet. Chang. 2014, 115, 16–23. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. Available online: https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (accessed on 1 July 2023).
- Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Almazroui, M.; Salam, M.A.; Mondol, A.H.; Rahman, M.; Deb, L.; Kundu, P.K.; Zaman, A.U.; Islam, A.R.M.T. Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI). Sci. Rep. 2022, 12, 20694. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.r-project.org (accessed on 2 February 2023).
- Sneyers, R. On Statistical Analysis of Series of Observations; Technical Note No 143; World Meteorological Society: Geneva, Switzerland, 1990; Available online: https://www.scirp.org/(S(czeh2tfqw2orz553k1w0r45))/reference/referencespapers.aspx?referenceid=1292315 (accessed on 28 March 2023).
- Kendall, M.; Gibbons, J.D. ‘Rank Correlation Methods’. Arnold. Sneyers R. In On Statistical Analysis of Series of Observations; Technical Note No 143.; World Meteorological Society: Geneva, Switzerland, 1990; Available online: https://library.wmo.int/index.php?lvl=notice_display&id=7427#.ZCKIh3ZByZ4 (accessed on 28 March 2023).
- Schaber, J. _Pheno: Auxiliary Functions for Phenological Data Analysis_. R Package Version 1.7-0. 2022. Available online: https://CRAN.R-project.org/package=pheno (accessed on 31 March 2023).
- Satoh, Y.; Yoshimura, K.; Pokhrel, Y.; Kim, H.; Shiogama, H.; Yokohata, T.; Hanasaki, N.; Wada, Y.; Burek, P.; Byers, E.; et al. The timing of unprecedented hydrological drought under climate change. Nat. Commun. 2022, 13, 3287. [Google Scholar] [CrossRef] [PubMed]
- Jumrani, K.; Bhatia, V.S. Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. Physiol. Mol. Biol. Plants 2018, 24, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Fecht, S. How Climate Change Impacts Our Water. 2019. Available online: https://news.climate.columbia.edu/2019/09/23/climate-change-impacts-water/ (accessed on 15 March 2023).
- Cauderay, E.; Wain, J.; Alsobari, A. Detailed Shelter Response Profile for Yemen: Local Building Cultures for Sustainable and Resilient Habitats. CRAterre; Global Shelter Cluster, 69p., hal-03772939v2. 2022. Available online: https://hal.science/hal-03772939v2 (accessed on 19 March 2023).
- Gadain, H. Being the Change in Yemen: Improving Integrated Water Resources Management for Food Security. 2023. Available online: https://reliefweb.int/report/yemen/being-change-yemen-improving-integrated-water-resources-management-food-security (accessed on 29 March 2023).
- Abd-El-Kader, M.M.; El-Feky, A.M.; Saber, M.; AlHarbi, M.M.; Alataway, A.; Alfaisal, F.M. Designating Appropriate Areas for Flood Mitigation and Rainwater Harvesting in Arid Region Using a GIS-based Multi-criteria Decision Analysis. Water Resour. Manag. 2023, 37, 1083–1108. [Google Scholar] [CrossRef]
- Ammar, A.; Riksen, M.; Ouessar, M.; Ritsema, C. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. Int. Soil Water Conserv. Res. 2016, 4, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.C.A. Planting trees to combat drought. Nat. Geosci. 2021, 14, 458–459. [Google Scholar] [CrossRef]
- Aljawzi, A.A.; Fang, H.; Abbas, A.A.; Khailah, E.Y. Assessment of Water Resources in Sana’a Region, Yemen Republic (Case Study). Water 2022, 14, 1039. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Al-Saidi, M. Contribution of Water Scarcity and Sustainability Failures to Disintegration and Conflict in the Arab Region—The Case of Syria and Yemen. In The Regional Order in the Gulf Region and the Middle East; Amour, P., Ed.; Palgrave Macmillan: Cham, Switzerland; Springer EBooks: London, UK, 2020; pp. 375–405. [Google Scholar] [CrossRef]
- Al-Mahfadi, A.; Dakki, M. Vulnerability of Al-hodidah wetlands in Yemen: Main socio-economic causes. Mater. Today: Proc. 2019, 13, 515–524. [Google Scholar] [CrossRef]
- Al-Mashreki, M.H. Characterization of Soil and Water Resources in Yemen; Springer EBooks: Berlin/Heidelberg, Germany, 2022; pp. 151–172. [Google Scholar] [CrossRef]
- Price, R. Climate Change Risks and Opportunities in Yemen; K4D Helpdesk Report 1168; Institute of Development Studies: Falmer, UK, 2022. [Google Scholar] [CrossRef]
- Oweis, T.Y.; Prinz, D.; Hachum, A.Y. Rainwater Harvesting for Agriculture in the Dry Areas; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Allan, R.P.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Gan, T.Y.; Pendergrass, A.G.; Rosenfeld, D.; Swann, A.L.S.; et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 2020, 1472, 49–75. [Google Scholar] [CrossRef] [Green Version]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Ferreira, L.B.; Da Cunha, F.F. New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agric. Water Manag. 2020, 234, 106113. [Google Scholar] [CrossRef]
- Crosbie, R.S.; Doble, R.C.; Turnadge, C.; Taylor, A.R. Constraining the Magnitude and Uncertainty of Specific Yield for Use in the Water Table Fluctuation Method of Estimating Recharge. Water Resour. Res. 2019, 55, 7343–7361. [Google Scholar] [CrossRef]
- Xiang, W.; Evaristo, J.; Li, Z. Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits. Geoderma 2020, 369, 114321. [Google Scholar] [CrossRef]
- USGS. Artificial Groundwater Recharge. 2019. Available online: https://www.usgs.gov/mission-areas/water-resources/science/artificial-groundwater-recharge (accessed on 30 March 2023).
- Alataway, A.; El Alfy, M. Rainwater Harvesting and Artificial Groundwater Recharge in Arid Areas: Case Study in Wadi Al-Alb, Saudi Arabia. J. Water Resour. Plan. Manag. 2019, 145, 05018017. [Google Scholar] [CrossRef]
- Girgirah, A.A.; Maktari, M.S.; Sattar, H.A.; Mohammed, M.F.; Abbas, H.H.; Shoubihi, H.M. Wadi Development for Agriculture in PDR Yemen. 2021. Available online: https://floodbased.org/wp-content/uploads/2021/05/Wadi-development-for-agriculture-in-PDR-Yemen.pdf (accessed on 29 March 2023).
Variable | Representation | Units | Source |
---|---|---|---|
Precipitation | P | mm | [20] |
Actual Evapotranspiration | Ea | mm | [20] |
Runoff | Q | mm | [20] |
Climatic Water Deficit | CWD | mm | [20] |
Water Storage | ΔS | mm | Equation (1) |
Wind Speed | WS | m s−1 | [20] |
Description | SPI Values |
---|---|
Extreme drought | ≤−2 |
Severe drought | −1.9 to −1.5 |
Moderate drought | −1.4 to −1.0 |
Near Normal | −0.9 to 0.9 |
Moderately wet | 1 to 1.5 |
Severely wet | 1.6 to 2 |
Extremely wet | ≥2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadain, H.; Libanda, B. Agricultural Water Deficit Trends in Yemen. Atmosphere 2023, 14, 1263. https://doi.org/10.3390/atmos14081263
Gadain H, Libanda B. Agricultural Water Deficit Trends in Yemen. Atmosphere. 2023; 14(8):1263. https://doi.org/10.3390/atmos14081263
Chicago/Turabian StyleGadain, Hussein, and Brigadier Libanda. 2023. "Agricultural Water Deficit Trends in Yemen" Atmosphere 14, no. 8: 1263. https://doi.org/10.3390/atmos14081263
APA StyleGadain, H., & Libanda, B. (2023). Agricultural Water Deficit Trends in Yemen. Atmosphere, 14(8), 1263. https://doi.org/10.3390/atmos14081263