Forecasting Turning Points of Carbon Emissions in Beijing Based on Interpretable Machine Learning
Abstract
:1. Introduction
2. Methodology
2.1. EKC Estimate
2.2. Machine Learning Algorithms
2.3. Error Correction Model
3. Results and Discussion
3.1. Prediction of Carbon Emissions Turning Points
3.2. Influencing Factors of Carbon Emissions
3.3. Results of Error Correction Model
3.4. Low-Carbon Policy Analysis
3.5. Limitation of Our Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, H.; Guo, X.; Zhao, S.; Yang, H. Variation of net carbon emissions from land use change in the Beijing-Tianjin-Hebei Region during 1990–2020. Land 2022, 11, 997. [Google Scholar] [CrossRef]
- Gulcebi, M.I.; Bartolini, E.; Lee, O.; Lisgaras, C.P.; Onat, F.; Mifsud, J.; Striano, P.; Vezzani, A.; Hildebr, M.S.; Jimenez-Jimenez, D.; et al. Climate change and epilepsy: Insights from clinical and basic science studies. Epilepsy Behav. 2021, 116, 107791. [Google Scholar] [CrossRef] [PubMed]
- Beijing Municipal People’s Government. Circular of the Beijing Municipal People’s Government on the Issuance of Measures for the Control of Air Pollution for the Period 2012–2020; Beijing Municipal People’s Government: Beijing, China, 2012. Available online: https://www.beijing.gov.cn/zhengce/zfwj/zfwj/szfwj/201905/t20190523_72557.html (accessed on 28 July 2023).
- Chinese Government. Suggestions of the CPC Central Committee on the Formulation of the 14th Five-Year Plan for National Economic and Social Development and the Long-Term Goals for 2035. 2020. Available online: https://www.gov.cn/zhengce/2020-11/03/content_5556991.htm (accessed on 28 July 2023).
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Villanthenkodath, M.A.; Gupta, M.; Saini, S.; Sahoo, M. Impact of Economic Structure on the Environmental Kuznets Curve (EKC) hypothesis in India. J. Econ. Struct. 2021, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Dogan, E.; Inglesi Lotz, R. The Impact of Economic Structure to the Environmental Kuznets Curve (EKC) Hypothesis: Evidence from European Countries. Environ. Econ. Pollut. Res. 2020, 27, 12717–12724. [Google Scholar] [CrossRef]
- Brock, W.A.; Taylor, M.S. Economic growth and the environment: A review of theory and empirics. Handb. Econ. Growth 2005, 1, 1749–1821. [Google Scholar]
- Caviglia-Harris, J.L.; Chambers, D.; Kahn, J.R. Taking the “U” out of Kuznets: A comprehensive analysis of the EKC and environmental degradation. Ecol. Econ. 2009, 68, 1149–1159. [Google Scholar] [CrossRef]
- Ahmed, A.; Uddin, G.S.; Sohag, K. Biomass energy, technological progress and the environmental Kuznets curve: Evidence from selected European countries. Biomass Bioenergy 2016, 90, 202–208. [Google Scholar] [CrossRef]
- Sohag, K.; Kalugina, O.; Samargandi, N. Revisiting Environmental Kuznets Curve: Role of Scale Compositeand Technology Factors in OECD Countries. Environ. Sci. Pollut. Res. 2019, 26, 27726–27737. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Adams, S. Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Sci. Total Environ. 2018, 643, 1590–1601. [Google Scholar] [CrossRef]
- Jaeger, W.K.; Kolpin, V.; Siegel, R. The environmental Kuznets curve reconsidered. Energy Econ. 2023, 120, 106561. [Google Scholar] [CrossRef]
- Lin, B.; Omoju, O.E.; Nwakeze, N.M.; Okonkwo, J.U.; Megbowon, E.T. Is the environmental Kuznets curve hypothesis a sound basis for environmental policy in Africa? J. Clean. Prod. 2016, 133, 712–724. [Google Scholar] [CrossRef]
- Allard, A.; Takman, J.; Uddin, G.S.; Ahmed, A. The N-shaped environmental Kuznets curve: An empirical evaluation using a panel quantile regression approach. Environ. Sci. Pollut. Res. 2018, 25, 5848–5861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanger, M. The carbon Kuznets curve: A cloudy picture emitted by bad econometrics. Resour. Energy Econ. 2008, 30, 388–408. [Google Scholar]
- Omri, A. CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Econ. 2013, 40, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.F. Capital deepening, technological progress and the formation of EKC for carbon emissions in China. Syst. Eng. Theory Pract. 2022, 42, 1632–1643. [Google Scholar]
- Chang, H.Y.; Wang, W.; Yu, J. Revisiting the environmental Kuznets curve in China: A spatial dynamic panel data approach. Energy Econ. 2021, 104, 105600. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Chang, Q. Analysis of China’s achievement of emission reduction targets and countermeasures for emission reduction based on the EKC model. Manag. World 2009, 4, 75–82. [Google Scholar]
- de Bruyn, S.M.; van den Berge, J.C.J.M.; Opschoor, J.B. Economics growth and emissions: Reconsidering the empirical basis of environmental Kuznets curves. Ecol. Econ. 1998, 25, 161–175. [Google Scholar] [CrossRef]
- Panayatou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development; World Employment Program Research Working Paper; International Labour Office: Geneva, Switzerland, 1993. [Google Scholar]
- Banaei, A.; Alamatian, J.; Tohidi, R.Z. Active control of structure using genetic algorithm with dynamic weighting factors using in the constrained objective function. Structure 2022, 47, 189–200. [Google Scholar] [CrossRef]
- Revuelta, E.C.; Chávez, M.J.; Vera, J.A.B.; Rodríguez, Y.F.; Sánchez, M.C. Optimization of laser scanner position networks for architectural surveys through the design of genetic algorithms. Measurement 2021, 174, 108898. [Google Scholar] [CrossRef]
- Cilia, N.D.; D’Alessandro, T.; De Stefano, C.; Fontanella, F.; di Freca, A.S. Comparing filter and wrapper approaches for feature selection in handwritten character recognition. Pattern Recognit. Lett. 2023, 168, 39–46. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Zhang, J.; Sun, D.; Zhou, X.; Mi, C.; Wen, H. Insight insto geospatial heterogeneity of landslide suscepticity based on the SHAP-XGBoost model. J. Environ. Manag. 2023, 332, 117357. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, Z.; Zhao, C.; Chen, X.; He, J.; Zhang, C. A three-stage multi-objective heterogeneous integrated model with decomposition-reconstruction mechanism and adaptive segmentation error correction method for ship motion multi-step prediction. Adv. Eng. Inform. 2023, 56, 101954. [Google Scholar] [CrossRef]
Models | Square EKC | Cubic EKC | Generalized EKC | Filter Method | Decision Tree | Stepwise Regression | Genetic Algorithm |
---|---|---|---|---|---|---|---|
Intercept | 9145 *** | 8945 *** | * | 11,160 *** | |||
GDP | 0.3954 *** | 0.5587 *** | * | 0.6581 ** | |||
*** | *** | 0.0603 | *** | ||||
- | 0.0234 *** | 0.0103 | 0.0363 ** | ||||
Energy | - | - | 1.111 * | 1.8500 *** | 1.5060 *** | 1.1390 * | |
Export | - | - | 8.8220 *** | 6.7090 *** | 6.3260 *** | 8.4720 ** | - |
Import | - | - | *** | * | ** | - | |
UR | - | - | * | - | - | ** | - |
AT | - | - | −250.8 | −290.9 | - | −245.4 | - |
- | - | 37.39 | 8.024 | 0.3374 | - | ||
RPG | - | - | 69.81 | 110.5 ** | 87.82 * | 67.19 | - |
LE | - | - | 130.3 *** | 116.4 *** | 141.1 *** | 130.2 *** | - |
0.8255 | 0.8587 | 0.9685 | 0.9591 | 0.9544 | 0.9679 | 0.8653 |
Variables | Coefficients | Standard Variance |
---|---|---|
Intercept | −2902 | 2845 |
GDP | −0.067 | 0.1883 |
−0.01273 | 0.07643 | |
−0.005478 | 0.01102 | |
LE | 131.1 | 21.85 *** |
AT | −224 | 127.3 |
77.22 | 49.72 | |
Export | 8.573 | 1.251 *** |
Import | −0.9289 | 0.2266 *** |
Energy | 1.107 | 0.4074 * |
RPG | 70.7 | 35.47 |
UR | −592.1 | 188.6 ** |
DV | −878.5 | 470.2 * |
= 0.9726 | = 0.962 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, T.; Wang, Y.; Li, X.; Lian, X.; Li, J. Forecasting Turning Points of Carbon Emissions in Beijing Based on Interpretable Machine Learning. Atmosphere 2023, 14, 1288. https://doi.org/10.3390/atmos14081288
Yao T, Wang Y, Li X, Lian X, Li J. Forecasting Turning Points of Carbon Emissions in Beijing Based on Interpretable Machine Learning. Atmosphere. 2023; 14(8):1288. https://doi.org/10.3390/atmos14081288
Chicago/Turabian StyleYao, Tianen, Yaqi Wang, Xinhao Li, Xinyao Lian, and Jing Li. 2023. "Forecasting Turning Points of Carbon Emissions in Beijing Based on Interpretable Machine Learning" Atmosphere 14, no. 8: 1288. https://doi.org/10.3390/atmos14081288
APA StyleYao, T., Wang, Y., Li, X., Lian, X., & Li, J. (2023). Forecasting Turning Points of Carbon Emissions in Beijing Based on Interpretable Machine Learning. Atmosphere, 14(8), 1288. https://doi.org/10.3390/atmos14081288