Spatiotemporal Analysis of Urban Carbon Metabolism and Its Response to Land Use Change: A Case Study of Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Description
2.2. Urban Carbon Flows Accounting
- ▪
- Urban carbon metabolism calculation
- ▪
- Carbon sequestration evaluation using the Carnegie–Ames–Stanford Approach (CASA) model
- ▪
- Carbon emission accounting
2.3. Spatial Pattern of Carbon Metabolism
3. Results
3.1. Land Use Change of Beijing during 2000~2020
3.2. Spatiotemporal Changes of Carbon Emissions and Sequestration
3.3. Carbon Transition between Urban Components
3.4. Spatial Pattern of Urban Carbon Metabolism and Its Relationship to Land Use Change
4. Discussion
4.1. Urban Carbon Metabolism with Land Use Change and Urban Development Policies
4.2. Comparison with Other Studies
4.3. Limitations of the Study and Perspective for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mi, Z.; Guan, D.; Liu, Z.; Liu, J.; Viguié, V.; Fromer, N.; Wang, Y. Cities: The core of climate change mitigation. J. Clean. Prod. 2019, 207, 582–589. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Fong, W.K.; Sotos, M.; Doust, M.; Schultz, S.; Marques, A.; Deng-Beck, C. Global Protocol for Community-Scale Greenhouse Gas Inventories: An Accounting and Reporting Standard for Cities, Version 1.1; Greenhouse Gas Protocoll: Washington, DC, USA, 2021. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Zhu, Q.; Zeng, M.; Jia, P.; Guo, M.; Liang, X.; Guan, Q. Measuring the urban sprawl based on economic-dominated perspective: The case of 31 municipalities and provincial capitals. Geo-Spat. Inf. Sci. 2023, 1–18. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; pp. 923–1000. [Google Scholar]
- Hong, C.; Burney, J.A.; Pongratz, J.; Nabel, J.E.M.S.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Li, R.; Yang, X. Spatio-temporal effects of urbanization on CO2 emissions: Evidences from 268 Chinese cities. Energy Policy 2023, 177, 113569. [Google Scholar] [CrossRef]
- Chen, Q.; Su, M.; Meng, F.; Liu, Y.; Cai, Y.; Zhou, Y.; Yang, Z. Analysis of urban carbon metabolism characteristics based on provincial input-output tables. J. Environ. Manag. 2020, 265, 110561. [Google Scholar] [CrossRef]
- Chen, S.; Long, H.; Chen, B. Assessing urban low-carbon performance from a metabolic perspective. Sci. China Earth Sci. 2021, 64, 1721–1734. [Google Scholar] [CrossRef]
- Carpio, A.; Ponce-Lopez, R.; Lozano-Garcia, D.F. Urban form, land use, and cover change and their impact on carbon emissions in the Monterrey Metropolitan area, Mexico. Urban Clim. 2021, 39, 100947. [Google Scholar] [CrossRef]
- Kang, T.; Wang, H.; He, Z.; Liu, Z.; Ren, Y.; Zhao, P. The effects of urban land use on energy-related CO2 emissions in China. Sci. Total Environ. 2023, 870, 161873. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zheng, H.; He, X.; Zhang, D.; Shen, G.; Zhai, C. Changes in spatio-temporal patterns of urban forest and its above-ground carbon storage: Implication for urban CO2 emissions mitigation under China’s rapid urban expansion and greening. Environ. Int. 2019, 129, 438–450. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xia, C.; Shao, Z.; Zhao, J. The Spatiotemporal Evolution and Prediction of Carbon Storage: A Case Study of Urban Agglomeration in China’s Beijing-Tianjin-Hebei Region. Land 2022, 11, 858. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, D.; Cao, L.; Anderson, B. Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China. Land 2022, 11, 244. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, N.; Yan, J.; Liu, C.; Yin, S. Decoupling between carbon source and sink induced by responses of daily stem growth to water availability in subtropical urban forests. Sci. Total Environ. 2023, 877, 162802. [Google Scholar] [CrossRef]
- Namahoro, J.P.; Wu, Q.; Xiao, H.; Zhou, N. The Impact of Renewable Energy, Economic and Population Growth on CO2 Emissions in the East African Region: Evidence from Common Correlated Effect Means Group and Asymmetric Analysis. Energies 2021, 14, 312. [Google Scholar] [CrossRef]
- Zhu, B.; Shan, H. Impacts of industrial structures reconstructing on carbon emission and energy consumption: A case of Beijing. J. Clean. Prod. 2019, 245, 118916. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L. The nonlinear effect of population aging, industrial structure, and urbanization on carbon emissions: A panel threshold regression analysis of 137 countries. J. Clean. Prod. 2020, 287, 125381. [Google Scholar] [CrossRef]
- Han, L.; Xu, X.; Han, L. Applying quantile regression and Shapley decomposition to analyzing the determinants of household embedded carbon emissions: Evidence from urban China. J. Clean. Prod. 2015, 103, 219–230. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C. What are the impacts of demographic structure on CO2 emissions? A regional analysis in China via heterogeneous panel estimates. Sci. Total Environ. 2018, 650, 2021–2031. [Google Scholar] [CrossRef] [PubMed]
- Pottier, A. Expenditure-elasticity and income-elasticity of GHG emissions: A survey of literature on household carbon footprint. Ecol. Econ. 2022, 192, 107251. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Liu, Y.; Tian, M.M.; Ding, M.L.; Cao, L.H.; Zhang, Z.P.; Chuai, X.W.; Xiao, L.G.; Yao, L.G. Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy 2018, 72, 480–492. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, X.; Xiao, Y.; Lin, Z. Spatial and structural characteristics of the ecological network of carbon metabolism of cultivated land based on land use and cover change: A case study of Nanchang, China. Environ. Sci. Pollut. Res. 2023, 30, 30514–30529. [Google Scholar] [CrossRef]
- Cui, X.Z.; Li, S.Y.; Gao, F. Examining spatial carbon metabolism: Features, future simulation, and land-based mitigation. Ecol. Model. 2020, 438, 109325. [Google Scholar] [CrossRef]
- Pianegonda, A.; Favargiotti, S.; Ciolli, M. Rural-Urban Metabolism: A Methodological Approach for Carbon-Positive and Circular Territories. Sustainability 2022, 14, 13964. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Hepinstall-Cymerman, J.; Alberti, M. Carbon consequences of land cover change and expansion of urban lands: A case study in the Seattle metropolitan region. Landsc. Urban Plan. 2011, 103, 83–93. [Google Scholar] [CrossRef]
- Li, Y.; Shen, J.; Xia, C.; Xiang, M.; Cao, Y.; Yang, J. The impact of urban scale on carbon metabolism—A case study of Hangzhou, China. J. Clean. Prod. 2021, 292, 126055. [Google Scholar] [CrossRef]
- Falahatkar, S.; Rezaei, F. Towards low carbon cities: Spatio-temporal dynamics of urban form and carbon dioxide emissions. Remote Sens. Appl.-Soc. Environ. 2020, 18, 100317. [Google Scholar] [CrossRef]
- Xia, C.; Xiang, M.; Fang, K.; Li, Y.; Ye, Y.; Shi, Z.; Liu, J. Spatial-temporal distribution of carbon emissions by daily travel and its response to urban form: A case study of Hangzhou, China. J. Clean. Prod. 2020, 257, 120797. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Lai, L.; Wang, W.; Peng, J.; Zhao, R. Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environ. Sci. Policy 2013, 25, 50–61. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zhang, J.; Xu, C.; Gao, Y.; Zheng, S.; Xia, M. Analysis of Spatial Carbon Metabolism by ENA: A Case Study of Tongzhou District, Beijing. Land 2022, 11, 1573. [Google Scholar] [CrossRef]
- Xia, L.L.; Zhang, Y.; Yu, X.Y.; Fu, C.L.; Li, Y.G. An integrated analysis of input and output flows in an urban carbon metabolism using a spatially explicit network model. J. Clean. Prod. 2019, 239, 118063. [Google Scholar] [CrossRef]
- Elliot, T.; Rugani, B.; Almenar, J.B.; Niza, S. A Proposal to Integrate System Dynamics and Carbon Metabolism for Urban Planning. In Proceedings of the 25th CIRP Conference on Life Cycle Engineering in Copenhagen, Copenhagen, Denmark, 30 April–2 May 2018. [Google Scholar]
- Zhang, Y.; Linlin, X.; Weining, X. Analyzing spatial patterns of urban carbon metabolism: A case study in Beijing, China. Landsc. Urban Plan. 2014, 130, 184–200. [Google Scholar] [CrossRef]
- Xia, C.Y.; Li, Y.; Xu, T.B.; Ye, Y.M.; Shi, Z.; Peng, Y.; Liu, J.M. Quantifying the spatial patterns of urban carbon metabolism: A case study of Hangzhou, China. Ecol. Indic. 2018, 95, 474–484. [Google Scholar] [CrossRef]
- Wei, J.; Xia, L.; Chen, L.; Zhang, Y.; Yang, Z. A network-based framework for characterizing urban carbon metabolism associated with land use changes: A case of Beijing city, China. J. Clean. Prod. 2022, 371, 133695. [Google Scholar] [CrossRef]
- Zhuang, Q.; Shao, Z.; Li, D.; Huang, X.; Li, Y.; Altan, O.; Wu, S. Impact of global urban expansion on the terrestrial vegetation carbon sequestration capacity. Sci. Total Environ. 2023, 879, 163074. [Google Scholar] [CrossRef]
- Yin, L.; Sharifi, A.; Liqiao, H.; Jinyu, C. Urban carbon accounting: An overview. Urban Clim. 2022, 44, 101195. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chin. J. Plant Ecol. 2007, 31, 413–424. (In Chinese) [Google Scholar]
- Huang, X.; He, L.; He, Z.; Nan, X.; Lyu, P.; Ye, H. An improved Carnegie-Ames-Stanford Approach model for estimating ecological carbon sequestration in mountain vegetation. Front. Ecol. Evol. 2022, 10, 1048607. [Google Scholar] [CrossRef]
- Beijing Municipal Bureau of Statistics. Beijing Statistical Yearbook; China Statistics Press: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Resource and Environment Science and Data Center, China Land Use Remote Sensing Monitoring Dataset (CNLUCC). Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=54 (accessed on 11 June 2020).
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Zhai, L.; Ji, L.; Feng, Y.; Sang, H. Spatial terrestrial carbon emissions/sequestrations evolution based on ecological network analysis in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Eng. 2023, 189, 106914. [Google Scholar] [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. 2022. Available online: https://catalog.data.gov/dataset/modis-terra-vegetation-indices-16-day-l3-global-250m-sin-grid-v006 (accessed on 1 June 2023).
- National Bureau of Statistics and Energy Bureau of National Development and Reform Commission. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Zhang, Y.; Xia, L.; Fath, B.D.; Yang, Z.; Yin, X.; Su, M.; Liu, G.; Li, Y. Development of a spatially explicit network model of urban metabolism and analysis of the distribution of ecological relationships: Case study of Beijing, China. J. Clean. Prod. 2016, 112, 4304–4317. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Haibo, H. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 2006, 51, 7. [Google Scholar] [CrossRef]
- Song, M.; Zhao, Y.; Liang, J.; Li, F. Spatial-temporal variability of carbon emission and sequestration and coupling coordination degree in Beijing district territory. Clean. Environ. Syst. 2023, 8, 100102. [Google Scholar] [CrossRef]
- Resource and Environment Science and Data Center, China Net Primary Production Dataset. Available online: https://www.resdc.cn/data.aspx?DATAID=204 (accessed on 6 July 2022).
- Runing, S. MOD17A3 MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500m SIN Grid V061. NASA EOSDIS Land Processes DAAC. 2023. Available online: https://data.nasa.gov/dataset/MODIS-Terra-Net-Primary-Production-Gap-Filled-Year/4fyi-5pxq (accessed on 1 June 2023).
- Xia, C.Y.; Li, Y.; Xu, T.B.; Chen, Q.X.; Ye, Y.M.; Shi, Z.; Liu, J.M.; Ding, Q.L.; Li, X.S. Analyzing spatial patterns of urban carbon metabolism and its response to change of urban size: A case of the Yangtze River Delta, China. Ecol. Indic. 2019, 104, 615–625. [Google Scholar] [CrossRef]
- Local Accounting Standards of Carbon Dioxide Emission in Beijing. Available online: https://www.bjets.com.cn/article/zcfg/202205/20220500002186.shtml (accessed on 6 July 2022).
- Kuang, Y.Q.; Ouyang, T.P.; Zou, Y.; Liu, Y.; Li, C.; Wang, D.H. Present situation of carbon source and sink and potential for increase of carbon sink in Guangdong Province. China Popul. Resour. Environ. 2010, 2012, 56–61. [Google Scholar]
- Fang, J.Y.; Liu, G.H.; Xu, S.L. Carbon Cycle of Terrestrial Ecosystem in China and Its Global Meaning; China Environmental Science Press: Beijing, China, 1996. (In Chinese) [Google Scholar]
Symbol | Component | Composition |
---|---|---|
C | Cultivated land | Irrigated cultivated land (C1); dry cultivated land (C2) |
F | Forest | Forest (F1); shrub land (F2); open woodland (F3); other woodland (F4) |
G | Grassland | High-coverage grassland (G1, vegetation cover more than 50%); medium-coverage grassland (G2, vegetation cover between 20 and 50%); low-coverage grassland (G3, vegetation cover between 5 and 20%); |
W | Water | Rivers (W1); lakes and reservoirs (W1); intermittently flooded land (W3) |
U | Urban land | Built-up areas of the city |
R | Rural land | Rural residential areas independent from the urban areas |
T | Transportation and industrial land | Large areas of industrial and transportation land outside the urban and rural residential areas |
B | Bare land | Unused and non-vegetated land |
Process | 2000~2005 | 2005~2010 | 2010~2015 | 2015~2020 | ||||
---|---|---|---|---|---|---|---|---|
×107 kg C yr−1 | Transition Value | Direction | Transition Value | Direction | Transition Value | Direction | Transition Value | Direction |
Harmful processes | 343.37 | − | 188.52 | − | 327.67 | − | 132.68 | − |
Beneficial processes | 48.31 | + | 57.11 | + | 388.64 | + | 299.04 | + |
Net transition processes | 295.06 | − | 131.40 | − | 60.97 | + | 166.36 | + |
P1 (C, F) | 0.41 | C → F+ | 0.01 | C → F+ | 3.27 | C → F+ | 7.39 | C → F+ |
P2 (C, G) | 0.07 | C → G+ | - | - | 1.36 | C → G+ | 3.46 | C → G+ |
P3 (C, W) | 0.07 | W → C− | 0.01 | C → W+ | 1.12 | C → W+ | 0.32 | C → W+ |
P4 (C, U) | 87.24 | C → U− | 30.60 | C → U− | 78.93 | C → U− | 2.28 | C → U− |
P5 (C, R) | 9.83 | C → R− | 2.49 | C → R− | 2.71 | R → C+ | 10.23 | R → C+ |
P6 (C, T) | 168.17 | C → T− | 70.57 | C → T− | 46.66 | C → T− | 103.59 | C → T− |
P7 (F, G) | 0.03 | F → G+ | - | - | 2.83 | F → G+ | 0.16 | F → G+ |
P8 (F, U) | 3.83 | F → U− | 2.70 | F → U− | 14.87 | F → U− | 9.71 | U → F+ |
P9 (F, R) | 0.86 | F → R− | 0.35 | F → R− | 2.51 | F → R− | 2.88 | R → F+ |
P10 (F, T) | 16.85 | F → T− | 18.21 | F → T− | 126.80 | F → T− | 40.13 | T → F+ |
P11 (G, U) | 0.46 | G → U− | 1.26 | G → U− | 2.95 | U → G+ | 16.57 | U → G+ |
P12 (G, T) | 5.28 | G → T− | 17.93 | G → T− | 7.55 | G → T− | 85.65 | T → G+ |
P13 (W, U) | 2.53 | W → U− | 3.88 | W → U− | 3.32 | W → U− | 3.77 | U → W+ |
P14 (W, T) | 14.31 | W → T− | 20.12 | W → T− | 24.80 | W → T− | 8.47 | T → W+ |
P15 (U, R) | 30.03 | R → U− | 20.39 | R → U− | 21.22 | R → U− | 89.05 | U → R+ |
P16 (U, T) | 47.59 | T → U+ | 44.15 | T → U+ | 204.12 | T → U+ | 26.82 | U → T− |
P17 (R, T) | 3.62 | R → T− | 12.95 | T → R+ | 169.42 | T → R+ | 15.78 | T → R+ |
P18 (B, T) | - | - | - | - | 0.44 | B → T− | 2.90 | T → B+ |
Process | 2000~2005 | 2005~2010 | 2010~2015 | 2015~2020 | ||||
---|---|---|---|---|---|---|---|---|
×107 kg C yr−1 | Transition Value | Direction/ Proportion | Transition Value | Direction/ Proportion | Transition Value | Direction/ Proportion | Transition Value | Direction/ Proportion |
Land use transition processes | 295.06 | − | 131.40 | − | 60.97 | + | 166.36 | + |
Harmful processes | ||||||||
C → U− | −87.24 | 24.25% | −30.60 | 16.04% | −105.93 | 14.12% | −49.11 | 11.93% |
C → R− | −9.83 | 2.73% | −2.50 | 1.31% | −14.36 | 1.91% | −3.50 | 0.85% |
C → T− | −169.00 | 46.97% | −70.57 | 37.00% | −193.60 | 25.80% | −163.99 | 39.85% |
F → U− | −3.83 | 1.07% | −2.70 | 1.42% | −15.00 | 2.00% | −1.58 | 0.38% |
F → T− | −16.85 | 4.68% | −18.21 | 9.55% | −164.02 | 21.86% | −13.99 | 3.40% |
G → T− | −5.28 | 1.47% | −17.93 | 9.40% | −59.06 | 7.87% | −32.57 | 7.91% |
W → U− | −2.66 | 0.74% | −3.91 | 2.05% | −6.55 | 0.87% | −2.50 | 0.61% |
W → T− | −14.72 | 4.09% | −20.47 | 10.73% | −45.08 | 6.01% | −6.25 | 1.52% |
U → T− | - | - | −0.48 | - | −35.08 | - | −54.17 | - |
R → U− | −30.05 | 8.35% | −20.39 | 10.69% | −46.84 | 6.24% | −29.73 | 7.23% |
R → T− | −18.58 | 5.16% | −1.34 | 0.70% | −53.10 | 7.08% | −49.15 | 11.94% |
Beneficial processes | ||||||||
C → F+ | 0.41 | 0.63% | 0.01 | 0.01% | 5.91 | 0.73% | 6.76 | 1.17% |
C → G+ | 0.07 | 0.11% | - | - | 1.98 | 0.24% | 2.17 | 0.38% |
C → W+ | 0.02 | 0.03% | 0.01 | 0.02% | 1.48 | 0.18% | 0.30 | 0.05% |
G → F+ | 0.02 | 0.04% | - | - | 2.73 | 0.34% | 2.57 | 0.44% |
U → C+ | - | - | - | - | 27.01 | 3.33% | 46.83 | 8.10% |
U → F+ | - | - | - | - | 0.14 | 0.02% | 11.29 | 1.95% |
U → G+ | - | - | - | - | 4.86 | 0.60% | 18.22 | 3.15% |
U → W+ | 0.13 | 0.20% | 0.04 | 0.06% | 3.23 | 0.40% | 6.27 | 1.08% |
U → R+ | 0.02 | 0.04% | - | - | 25.62 | 3.16% | 118.78 | 20.55% |
R → C+ | - | - | 0.01 | 0.01% | 17.06 | 2.10% | 13.74 | 2.38% |
T → C+ | 0.83 | 1.28% | - | - | 146.94 | 18.11% | 60.40 | 10.45% |
T → F+ | 0.00 | 0.00% | - | - | 37.22 | 4.59% | 54.12 | 9.37% |
T → G+ | - | - | - | - | 51.51 | 6.35% | 118.22 | 20.46% |
T → W+ | 0.41 | 0.64% | 0.35 | 0.59% | 20.28 | 2.50% | 14.72 | 2.55% |
T → U+ | 47.59 | 73.55% | 44.62 | 75.21% | 239.20 | 29.48% | 27.35 | 4.73% |
T → R+ | 14.96 | 23.12% | 14.29 | 24.08% | 222.53 | 27.43% | 64.94 | 11.24% |
Land use type unchanged | 58.03 | + | 16.59 | + | 356.20 | + | 254.63 | + |
C → C | 12.69 | − | 20.44 | − | 87.49 | + | 53.72 | + |
F → F | 20.24 | + | 2.78 | − | 60.26 | + | 51.20 | + |
G → G | 2.00 | + | 0.07 | − | 8.23 | + | 10.32 | + |
W → W | 0.71 | + | 1.22 | − | 2.68 | + | 4.31 | + |
B → B | 0.00 | − | 0.00 | − | 0.00 | + | 0.00 | + |
U → U | 96.55 | − | 137.02 | − | 112.07 | + | 3.49 | − |
R → R | 7.67 | + | 37.42 | − | 57.71 | + | 36.00 | + |
T → T | 136.65 | + | 215.54 | + | 27.75 | + | 102.57 | + |
Total | 237.03 | − | 114.82 | − | 417.16 | + | 420.99 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Sun, J.; Zheng, J. Spatiotemporal Analysis of Urban Carbon Metabolism and Its Response to Land Use Change: A Case Study of Beijing, China. Atmosphere 2023, 14, 1305. https://doi.org/10.3390/atmos14081305
Hu Y, Sun J, Zheng J. Spatiotemporal Analysis of Urban Carbon Metabolism and Its Response to Land Use Change: A Case Study of Beijing, China. Atmosphere. 2023; 14(8):1305. https://doi.org/10.3390/atmos14081305
Chicago/Turabian StyleHu, Yingjie, Jin Sun, and Ji Zheng. 2023. "Spatiotemporal Analysis of Urban Carbon Metabolism and Its Response to Land Use Change: A Case Study of Beijing, China" Atmosphere 14, no. 8: 1305. https://doi.org/10.3390/atmos14081305
APA StyleHu, Y., Sun, J., & Zheng, J. (2023). Spatiotemporal Analysis of Urban Carbon Metabolism and Its Response to Land Use Change: A Case Study of Beijing, China. Atmosphere, 14(8), 1305. https://doi.org/10.3390/atmos14081305