Modeling of a Rotary Adsorber for Continuous Capture of Indoor Carbon Dioxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Governing Equations
- (1)
- The mixed gas follows the ideal gas law;
- (2)
- Gas flow is unsteady laminar flow;
- (3)
- The porosity of porous media has a uniform distribution;
- (4)
- The physical properties of the adsorbent are constant;
- (5)
- Linear driving force model for adsorption kinetics.
2.1.1. Mass Conservation Equation
2.1.2. Energy Conservation Equation
2.2. Adsorption Isotherms and Kinetics
2.3. Boundary and Initial Conditions
2.3.1. Boundary Conditions
2.3.2. Initial Conditions
2.4. Solve the Settings and Grid Independence Test
3. Results and Discussion
3.1. Temperature and Concentration Distribution in the Wheel
3.2. Effect of Rotating Speed
3.3. Effect of Desorption Inlet Velocity
3.4. Effect of Desorption Air Temperature
3.5. Different Proportion of Desorption Zone
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hahn Menacho, Á.J.; Marvuglia, A.; Benetto, E. Occupant’s health and energy use in an office building: A sensor-enabled life cycle assessment. Build. Environ. 2023, 236, 110274. [Google Scholar] [CrossRef]
- Park, J.; Loftness, V.; Aziz, A.; Wang, T.-H. Critical factors and thresholds for user satisfaction on air quality in office environments. Build. Environ. 2019, 164, 106310. [Google Scholar] [CrossRef]
- Yin, H.; Zhai, X.; Ning, Y.; Li, Z.; Ma, Z.; Wang, X.; Li, A. Online monitoring of PM2.5 and CO2 in residential buildings under different ventilation modes in Xi’an city. Build. Environ. 2021, 207, 108453. [Google Scholar] [CrossRef]
- Persily, A. Development and application of an indoor carbon dioxide metric. Indoor Air 2022, 32, e13059. [Google Scholar] [CrossRef]
- Li, B.; Cai, W. A novel CO2-based demand-controlled ventilation strategy to limit the spread of COVID-19 in the indoor environment. Build. Environ. 2022, 219, 109232. [Google Scholar] [CrossRef] [PubMed]
- Rajan, P.E.; Krishnamurthy, A.; Morrison, G.; Rezaei, F. Advanced buffer materials for indoor air CO2 control in commercial buildings. Indoor Air 2017, 27, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Gray, M.L.; Jones, C.W. Amine-Tethered Solid Adsorbents Coupling High Adsorption Capacity and Regenerability for CO2 Capture from Ambient Air. Chemsuschem 2011, 4, 628–635. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, S.-J. A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 2015, 23, 1–11. [Google Scholar] [CrossRef]
- An, X.; Li, T.; Chen, J.; Fu, D. 3D-hierarchical porous functionalized carbon aerogel from renewable cellulose: An innovative solid-amine adsorbent with high CO2 adsorption performance. Energy 2023, 274, 127392. [Google Scholar] [CrossRef]
- Mazaj, M.; Bjelica, M.; Žagar, E.; Logar, N.Z.; Kovacic, S. Zeolite Nanocrystals Embedded in Microcellular Carbon Foam as a High-Performance CO2 Capture Adsorbent with Energy-Saving Regeneration Properties. Chemsuschem 2020, 13, 2089–2097. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, W.; Song, M.; Wang, F.; Hu, X.; Guo, Q.; Liu, Y. Polyetheramine improves the CO2 adsorption behavior of tetraethylenepentamine-functionalized sorbents. Chem. Eng. J. 2019, 364, 475–484. [Google Scholar] [CrossRef]
- Tang, C.; Gao, X.; Shao, Y.; Wang, L.; Liu, K.; Gao, R.; Che, D. Investigation on the rotary regenerative adsorption wheel in a new strategy for CO2 enrichment in greenhouse. Appl. Therm. Eng. 2022, 205, 118043. [Google Scholar] [CrossRef]
- Chaffee, A.L.; Knowles, G.P.; Liang, Z.; Zhang, J.; Xiao, P.; Webley, P.A. CO2 capture by adsorption: Materials and process development. Int. J. Greenh. Gas Control. 2007, 1, 11–18. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Kim, M.K.; Baldini, L.; Leibundgut, H.; Wurzbacher, J.A.; Piatkowski, N. A novel ventilation strategy with CO2 capture device and energy saving in buildings. Energy Build. 2015, 87, 134–141. [Google Scholar] [CrossRef]
- Kim, M.K.; Baldini, L.; Leibundgut, H.; Wurzbacher, J.A. Wurzbacher, Evaluation of the humidity performance of a carbon dioxide (CO2) capture device as a novel ventilation strategy in buildings. Appl. Energy 2020, 259, 112869. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, L.; Zhao, L.; Deng, S.; Li, S.; Zhang, Y.; Li, H. Thermodynamic exploration of temperature vacuum swing adsorption for direct air capture of carbon dioxide in buildings. Energy Convers. Manag. 2019, 183, 418–426. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, H. Global performance analysis of a solar-driven indoor CO2/H2O capture system for air quality enhancement and cooling energy saving. Energy Convers. Manag. 2023, 280, 116831. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, H. Multi-Objective Optimization of Integrated Solar-Driven CO2 Capture System for an Industrial Building. Sustainability 2023, 15, 526. [Google Scholar]
- Dhoke, C.; Cloete, S.; Krishnamurthy, S.; Seo, H.; Luz, I.; Soukri, M.; Park, Y.-K.; Blom, R.; Amini, S.; Zaabout, A. Sorbents screening for post-combustion CO2 capture via combined temperature and pressure swing adsorption. Chem. Eng. J. 2020, 380, 122201. [Google Scholar] [CrossRef]
- Mason, J.A.; Sumida, K.; Herm, Z.R.; Krishna, R.; Long, J.R. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 2011, 4, 3030–3040. [Google Scholar] [CrossRef]
- Ge, T.; Ziegler, F.; Wang, R. A mathematical model for predicting the performance of a compound desiccant wheel (A model of compound desiccant wheel). Appl. Therm. Eng. 2010, 30, 1005–1015. [Google Scholar] [CrossRef]
- Alabi, W.O.; Karoyo, A.H.; Krishnan, E.N.; Dehabadi, L.; Wilson, L.D.; Simonson, C.J. Comparison of the Moisture Adsorption Properties of Starch Particles and Flax Fiber Coatings for Energy Wheel Applications. ACS Omega 2020, 5, 9529–9539. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, C.; Guo, Y.; Wu, Y.; Bai, W.; Che, D. Novel rotary regenerative heat exchanger using cascaded phase change material capsules. Appl. Therm. Eng. 2021, 188, 116619. [Google Scholar] [CrossRef]
- Wang, L.; He, Y.; Tang, C.; Wang, Y.; Che, D. A novel design of rotary regenerative condensing heat exchanger for the dehydration from high humidity flue gas. Int. J. Heat Mass Transf. 2019, 131, 517–526. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Ben-Mansour, R. Adsorption breakthrough and cycling stability of carbon dioxide separation from CO2/N2/H2O mixture under ambient conditions using 13X and Mg-MOF-74. Appl. Energy 2018, 230, 1093–1107. [Google Scholar] [CrossRef]
- Hu, X.; Mangano, E.; Friedrich, D.; Ahn, H.; Brandani, S. Diffusion mechanism of CO2 in 13X zeolite beads. Adsorption 2014, 20, 121–135. [Google Scholar] [CrossRef]
- Cavenati, S.; Grande, C.A.; Rodrigues, A.E. Rodrigues, Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. J. Chem. Eng. Data 2004, 49, 1095–1101. [Google Scholar] [CrossRef]
- Qazvini, O.T.; Fatemi, S. Modeling and simulation pressure-temperature swing adsorption process to remove mercaptan from humid natural gas; a commercial case study. Sep. Purif. Technol. 2015, 139, 88–103. [Google Scholar] [CrossRef]
- Minkowycz, W.; Haji-Sheikh, A.; Vafai, K. On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number. Int. J. Heat Mass Transf. 1999, 42, 3373–3385. [Google Scholar] [CrossRef]
- Herraiz, L.; Palfi, E.; Fernández, E.S.; Lucquiaud, M. Lucquiaud, Rotary Adsorption: Selective Recycling of CO2 in Combined Cycle Gas Turbine Power Plants. Front. Energy Res. 2020, 8, 482708. [Google Scholar] [CrossRef]
Parameter | Description | Value | Unit | Source |
---|---|---|---|---|
Radius of rotor | 1.0 | m | ||
Height of rotor | 0.2 | m | ||
Bed porosity | 0.566 | [26] | ||
Particle porosity | 0.143 | [27] | ||
Particle diameter | 0.0015 | m | [26] | |
Crystal radius | 5 × 10−10 | m | [27] | |
Average pore radius | 5.16 × 10−7 | m | [27] | |
Particle density | 1230 | kg/m3 | [26] | |
Adsorbent specific heat capacity | 900 | J/kg·K | [26] | |
Adsorbent thermal conductivity | 0.2 | W/m·K | [26] | |
CO2 maximum adsorption capacity in adsorbent | 9.842 | mol/kg | [28] | |
Adsorption constant at infinite dilution | 6.89 × 10−9 | 1/Pa | [28] | |
The heat of adsorption | 30,371 | J/mol | [28] | |
Toth model constant | 0.658 × (0.0013 × T) | [28] | ||
CO2 adsorption inlet concentration | 2000 | ppm | ||
CO2 desorption inlet concentration | 400 | ppm | ||
Adsorption inlet air temperature | 293.15 | K | ||
Desorption inlet air temperature | 393.15 | K |
At the Inlet | At the Outlet | On the Inner and Outer Walls |
---|---|---|
Temperature | Species Mass Fraction | Adsorbed Amount |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Wan, N.; Zeng, W.; Shi, J.; Liu, M.; Liu, H. Modeling of a Rotary Adsorber for Continuous Capture of Indoor Carbon Dioxide. Atmosphere 2023, 14, 1307. https://doi.org/10.3390/atmos14081307
Liu L, Wan N, Zeng W, Shi J, Liu M, Liu H. Modeling of a Rotary Adsorber for Continuous Capture of Indoor Carbon Dioxide. Atmosphere. 2023; 14(8):1307. https://doi.org/10.3390/atmos14081307
Chicago/Turabian StyleLiu, Lumeng, Ning Wan, Wenmao Zeng, Jiachen Shi, Meng Liu, and Huan Liu. 2023. "Modeling of a Rotary Adsorber for Continuous Capture of Indoor Carbon Dioxide" Atmosphere 14, no. 8: 1307. https://doi.org/10.3390/atmos14081307
APA StyleLiu, L., Wan, N., Zeng, W., Shi, J., Liu, M., & Liu, H. (2023). Modeling of a Rotary Adsorber for Continuous Capture of Indoor Carbon Dioxide. Atmosphere, 14(8), 1307. https://doi.org/10.3390/atmos14081307