Challenges and Progress in Computational Geophysical Fluid Dynamics in Recent Decades
Abstract
:Contents: |
Abstract |
Keywords |
1: Introduction: |
2: Shallow Water Equations and Numerical Schemes |
2.1: Instability Forward–Backward (FB) and Leapfrog (LF) Schemes |
2.2: Modified Leapfrog Scheme for Shallow Water Equations |
2.3: New Scheme for Shallow Water Equations |
2.4: Nonlinear Shallow Water Simulations |
2.4.1: Simulation of Dam Break: |
2.4.2: Solitary Rossby Wave |
2.4.3: Hydraulic Jumps |
2.4.4: Vortex Moving over Central Mountains Range in Taiwan |
2.4.5: Inviscid Vortex |
2.4.6: Trajectories of PV with Surface Friction |
2.4.7: Vortices Merge |
3: Linearized Equations |
3.1: Coexist of Two Different Types of Cloud Bands |
3.2: Solve Linearized Equations as Initial Value Problems |
3.2.1: Rainbands and Symmetric Instability |
3.3: Cloud Bands over Tropical Continent |
3.4: Ekman layers in Atmosphere and Ocean |
3.4.1: Simulation at 30° N with Diurnal Variation in Atmosphere and Ocean |
3.4.2.: Simulation at 60° S with Diurnal Variation in Atmosphere and Ocean |
4: PURDUE REGIONAL CLIMATE MODEL (PRCM)-a hydrostatic model |
4.1: Basic Equations |
4.2: Inland Sea Breeze and Dryline |
4.3: Effect of mountain |
4.3.1: Lee Vortices and Mountains |
4.3.2: Front Deforms around the Central Mountain Range in Taiwan |
4.4: Cyclogenesis and Winter Severe Storms in the USA |
5: Regional Climate |
5.1: 1993 Flood in the USA |
5.2: 1988 Drought in the USA |
5.3: Snow, Land Surface, and Regional Climate |
5.3.1: One-Dimensional Snow–Soil Model |
5.3.2: Equations for Snow Layer |
5.4.: Flooding due to Snow Melt |
5.5: Southeast and East Asian Monsoon |
5.6: Simulations of Dust Storm |
6: Nonhydrostatic Models |
6.1. Boussinesq Fluid Versus Compressible Fluid |
6.2. Modified Forward–Backward Scheme with Smoothing (MFBS) |
6.3: Kelvin–Helmholtz Wave |
6.4: Equations of NTU/Purdue Nonhydrostatic Model |
6.5: Numerical Scheme for Advection Equations |
6.6: Nonhydrostatic Model—Parcel Method, Froude Number, Bernoulli, Downslope Wind, and Waves |
6.7: Boulder Severe Downslope Windstorm |
6.8: Convective Available Potential Energy (CAPE) |
6.8.1: Dry Plume |
6.8.2: Moist Plume |
6.8.3: Nonhydrostatic Pressure Inside a Cloud Model |
6.9.: Lee Vortices and Hydraulic Jump in White Sand Missile Range |
7: Terrain Following Coordinate in Atmospheric Model |
7.1: Equations |
7.2: New Terrain Following Coordinate |
7.3: Gal-Chen and Somerville Terrain Following Coordinate |
7.4: Numerical Simulations |
7.4.1: Gradient |
7.4.2: Divergence |
7.4.3: Curl along |
7.4.4: The Navier–Stokes Equations in New Terrain-Following Coordinate |
8: Pollution Model |
8.1: Pollution in Convective Boundary Layer (CBL) |
8.2: Backward Integration of Diffusion Equation |
8.2.1: Forward-in-Time Integration |
8.2.2: Reverse-in-Time Integration |
9: Summary |
Acknowledgements: |
1. Introduction
2. Shallow Water Equations and Numerical Schemes
2.1. Instability of Forward–Backward (FB) and Leapfrog (LP) Schemes (Sun 2010) [23]
2.2. Modified Leapfrog Scheme for Shallow Water Equations
2.3. New Scheme for Shallow Water Equations, Sun (2011) [24]
2.4. Nonlinear Shallow Water Simulations
2.4.1. Simulation of Dam Break: Water Depth Is 10 m within a Radius of 11 m, and 1 m Outside
2.4.2. Solitary Rossby Wave (Sun and Sun 2013) [48]
2.4.3. Hydraulic Jumps
2.4.4. Vortex Moving over Central Mountains Range in Taiwan (Sun 2016) [55]
2.4.5. Inviscid Vortex with α = 0 and U = −1.2 m s−1 (U* = −6 m s−1)
2.4.6. Trajectories of PV with Surface Friction
2.4.7. Vortices Merge (Sun and Oh 2022) [62]
3. Linearized Equations
3.1. Coexist of Two Different Types of Cloud Bands (Sun 1978) [77]
3.2. Solve Linearized Equation as Initial Value Problems
Rainbands and Symmetric Instability (Sun, W. Y., 1984b) [80]
3.3. Cloud Bands over Tropical Continent
3.4. Ekman Layers in Atmosphere and Ocean (Sun and Sun 2020) [91]
3.4.1. Simulation at 30° N with Diurnal Variation in Atmosphere and Ocean (with and = 0.04 m2 s−1) (Case C of Sun and SUN 2020)
3.4.2. Simulation at 60° S with Diurnal Variation in Atmosphere and Ocean (Case G of Sun and Sun 2020 [91])
4. Purdue Regional Climate Model (PRCM)—A Hydrostatic Model
4.1. Basic Equations
4.2. Inland Sea Breeze and Dryline
4.3. Effect of Mountain
4.3.1. Lee Vortices and Mountains
4.3.2. Front Deforms around the Central Mountain Range (CMR) in Taiwan
4.4. Cyclogenesis and Winter Severe Storms in the USA
5. Regional Climate
5.1. 1993 Flood in the USA
5.2. 1988 Drought in the USA
5.3. Snow, Land Surface, and Regional Climate
5.3.1. One-Dimensional Snow–Soil Model (Sun and Chern, 116 [114])
5.3.2. Equations for Snow Layer
5.4. Flooding Due to Snow Melt
5.5. Southeast and East Asian Monsoon
5.6. Simulations of Dust Storm
6. Nonhydrostatic Models
6.1. Boussinesq Fluid Versus Compressible Fluid
6.2. Modified Forward–Backward Scheme with Smoothing (MFBS)
6.3. Kelvin–Helmholtz Wave with Δx = 10 m and Δz = 5 m from CReSS
6.4. Equations of NTU/Purdue Nonhydrostatic Model
6.5. Numerical Scheme for Advection Equations
6.6. Nonhydrostatic Model—Parcel Method, Froude Number, Bernoulli, Downslope Wind, and Waves (Sun and Sun 2015, 2019) [60,202]
6.7. Boulder Severe Downslope Windstorm
6.8. Convective Available Potential Energy (CAPE) (Sun and Sun 2019) [202]
6.8.1. Dry Plume with wamp = 3 m s−1 and m = 30, Case C of Sun and Sun (2019) [202]
6.8.2. Moist Plume with wamp = 1 m s−1 and m = 30, Case D of Sun and Sun (2019) [202]
6.8.3. Nonhydrostatic Pressure Inside a Cloud Model
6.9. Lee Vortices and Hydraulic Jump in White Sand Missile Range (Haines et al., 2019) [220]
7. Terrain Following Coordinate in Atmospheric Model (Sun 2021) [223]
7.1. Equations
7.2. New Terrain Following Coordinate
7.3. Gal-Chen and Somerville Terrain Following Coordinate
7.4. Numerical Simulations
7.4.1. Gradient
7.4.2. Divergence
7.4.3. Curl along y-Direction
7.4.4. The Navier–Stokes Equations in New Terrain-Following Coordinate
8. Pollution Model
8.1. Pollution in Convective Boundary Layer (CBL)
8.2. Backward Integration of Diffusion Equation (Sun and Sun 2017) [236]
8.2.1. Forward-in-Time Integration
8.2.2. Reverse-in-Time Integration
9. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bjerknes, V. Das Problem der Wettervorhersage, Betrachtet vom Stanpunkt der Mechanik und der Physik. Meteor. Zeits 1904, 21, 1–7. [Google Scholar]
- Richardson, L.F. Weather Prediction by Numerical Processes; Cambridge University Press: Boston, MA, USA, 1922; p. 66. ISBN 9780511618291. [Google Scholar]
- Charney, J.; Fjørtoft, R.; von Neumann, J. Numerical Integration of the Barotropic Vorticity Equation. Tellus 1950, 2, 237–254. [Google Scholar] [CrossRef]
- Phillips, N.A. The general circulation of the atmosphere: A numerical experiment. Q. J. R. Meteorol. Soc. 1956, 82, 123–154. [Google Scholar] [CrossRef]
- Poincaré, H. Sur les Fonctions Fuchsiennes. Comptes Rendus Hebd. L’académie Sci. Paris 1882, 94, 1166–1167. [Google Scholar]
- Poincaré, H. Sur le problème des trois corps et les équations de la dynamique. Acta Math. 1890, 13, 1–270. (In French) [Google Scholar]
- Poincaré, H. Solutions Periodiques, Non-Existence des Integrales Uniformes, Solutions Asymptotiques; Gauthier-Villars: Paris, France, 1892; Volume 1. (In French) [Google Scholar]
- Poincare, H. Memoire sur Jes courbes definies par une equation differentielle. J. Math. 1881, 7, 375–442. [Google Scholar]
- Lorenz, E. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Lorenz, E. The predictability of a flow which possess many scales of motion. Tellus 1969, 21, 289–307. [Google Scholar] [CrossRef]
- Smagorinsky, J. Problems and promises of deterministic extended range forecasting. Bull. Am. Meteorol. Soc. 1969, 50, 286–311. [Google Scholar] [CrossRef]
- Arakawa, A. Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys. 1966, 1, 119–143. [Google Scholar] [CrossRef]
- Paegle, P.; Yang, Q.; Wang, M. Predictability in limited area and global models. Meteorol. Atmos. Phys. 1997, 63, 53–69. [Google Scholar] [CrossRef]
- Wiin-Nielsen, A. On the stable part of the Lorenz attractor. Atmôsfera 1998, 11, 61–73. [Google Scholar]
- Charney, J.G.; Shukla, J. Predictability of monsoons. In Monsoon Dynamics; Lighthill, S.J., Pearce, R.P., Eds.; Cambridge University Press: Cambridge, UK, 1981; pp. 99–109. [Google Scholar]
- Hoskins, B.J. Predictability Beyond the Deterministic Limit. WMO Bull. 2012, 61, 33–36. [Google Scholar]
- Hand, L.N.; Finch, J.D. Analytical Mechanics; Cambridge University Press: Cambridge, UK, 2008; 575p. [Google Scholar]
- Beltrami, E. Mathematic for Dynamic Modeling; Academic Press: Cambridge, MA, USA, 1987; 277p. [Google Scholar]
- Shen, B.W. Homoclinic Orbits and Solitary Waves within the Nondissipative Lorenz Model and KdV Equation. Int. J. Bifurc. Chaos 2020, 30, 15. [Google Scholar] [CrossRef]
- Shen, B.-W.; Pielke, S.; Pielke, R.; Cui, J.; Faghih-Naini, S.; Paxson, W.; Kesarkar, A.; Atlas, R. The dual nature of chaos and order in the atmosphere. Atmosphere 2022, 13, 1892. [Google Scholar] [CrossRef]
- Shen, B.-W.; Pielke, R.A.; Zeng, X.; Cui, J.; Faghih-Naini, S.; Paxson, W.; Atlas, R. Three kinds of butterfly effects within Lorenz Models. Encyclopedia 2022, 2, 1250–1259. [Google Scholar] [CrossRef]
- Greenwood, D.T. Advanced Dynamics; Cambridge Press: New York, NY, USA, 2003; 425p. [Google Scholar]
- Sun, W.Y. Instability in leapfrog and forward-backward Schemes. Mon. Wea. Rev. 2010, 138, 1497–1501. [Google Scholar] [CrossRef]
- Sun, W.Y. Instability in Leapfrog and Forward-Backward Schemes: Part II: Numerical Simulation of Dam Break. J. Comput. Fluids 2011, 45, 70–76. [Google Scholar] [CrossRef]
- Mesinger, F.; Arakawa, A. Numerical Methods Used in Atmospheric Models. GARP Glob. Atmos. Res. Program 1976, 17, 64. [Google Scholar]
- Gill, A.E. Atmospheric-Ocean Dynamics; Academic Press: San Diego, CA, USA, 1982; 661p. [Google Scholar]
- Haltiner, G.J.; Williams, R.T. Numerical Prediction and Dynamic Meteorology, 2nd ed.; Wiley: Hoboken, NJ, USA, 1980; 477p. [Google Scholar]
- Pielke, S.R.A. Mesoscale Meteorological Modeling, 2nd ed.; Academic Press: Cambridge, MA, USA, 2002; 676p. [Google Scholar]
- Lin, Y.L. Mesoscale Dynamics; Cambridge University Press: New York, NY, USA, 2007; 633p. [Google Scholar]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Academic Press: Cambridge, MA, USA, 2012; 531p. [Google Scholar]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Longman Scientific & Technical: Harlow, UK, 1995; 257p. [Google Scholar]
- Pielke, R.A. Mesoscale Metorological Modeling; Elsevier Inc.: Amsterdam, The Netherlands, 1984; 612p. [Google Scholar]
- Pedlosky, J. Geophysical Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1979; 626p. [Google Scholar]
- Lorenz, E.N. Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 1980, 37, 1685–1699. [Google Scholar] [CrossRef]
- Nobel, B. Applied Linear Algebra; Prentice-Hall: Upper Saddle River, NJ, USA, 1969; 523p. [Google Scholar]
- Sun, W.Y. A comparison of two explicit time integration schemes applied to the transient heat equation. Mon. Wea. Rev. 1982, 110, 1645–1652. [Google Scholar] [CrossRef]
- Sun, W.Y.; Sun, O.M.T. A modified leapfrog scheme for shallow water equations. Comput. Fluids 2011, 52, 69–72. [Google Scholar] [CrossRef]
- Sun, W.Y. Numerical analysis for hydrostatic and nonhydrostatic equations of inertial-internal gravity waves. Mon. Wea. Rev. 1984, 112, 259–268. [Google Scholar] [CrossRef]
- Roe, P.L. Approximate Riemann Solvers, Parameter Vectors and Difference Schemes. J. Compu. Phys. 1981, 43, 357–372. [Google Scholar] [CrossRef]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1999; 309p. [Google Scholar]
- Wang, H.; Yeh, G.T. A characteristic-based semi-Lagrangian method for hyperbolic systems of conservation laws. Chin. J. Atmos. Sci. 2005, 29, 21–42. [Google Scholar]
- Oh, T.J. Development and Testing of Characteristic-Based Semi-Lagrangian Two-Dimensional Shallow Water Equations Development and Testing of Characteristic-Based Semi-Lagrangian Two-Dimensional Shallow Water Equations Model. Ph.D. Thesis, Purdue University, W. Lafayette, IN, USA, 2007; 148p. Available online: https://docs.lib.purdue.edu/dissertations/AAI3278686/ (accessed on 1 January 2008).
- MacCormack, R.W. The Effect of Viscosity in Hyper-Velocity Scattering; AIAA: Washington, DC, USA, 1969; pp. 69–354. [Google Scholar]
- Fujihara, M.; Borthwick, A.G.L. Godunov-type solution of curvilinear shallow-water equations. J. Hydraul. Eng. ASCE 2000, 126, 827–836. [Google Scholar] [CrossRef]
- Anastasiou, K.; Chan, C.T. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. Int. J. Numer. Methods Fluids 1997, 24, 1225–1245. [Google Scholar] [CrossRef]
- Tseng, M.H.; Chu, C.R. Two-dimensional shallow water flows simulation using TVD-MacCormack scheme. J. Hydraul. Res. 2000, 38, 123–131. [Google Scholar]
- Liang, Q.; Borthwick, A.G.L.; Stelling, G. Simulation of dam- and dyke-break hydrodynamics on dynamically adaptive quadtree grids. Int. J. Numer. Methods Fluids 2004, 46, 127–162. [Google Scholar] [CrossRef]
- Sun, W.Y.; Sun, O.M.T. Numerical Simulation of Rossby Wave in Shallow Water. Comput. Fluids 2013, 76, 116–127. [Google Scholar] [CrossRef]
- Chu, P.C.; Fan, C. Space-Time Transformation in Flux-form Semi-Lagrangian Schemes. Terr. Atmos. Ocean. Sci. 2010, 21, 17–26. [Google Scholar] [CrossRef]
- Boyd, J.P. Equatorial solitary waves. Part-1: Rossby solitons. J. Phys. Oceanogr. 1980, 10, 1699–1717. [Google Scholar] [CrossRef]
- Boyd, J.P. Equatorial solitary waves. Part 3: Westward-traveling Motions. J. Phys. Oceanogr. 1985, 15, 46–54. [Google Scholar] [CrossRef]
- Korteweg, D.J.; de Vries, G. On the change of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 1895, 39, 422–433. [Google Scholar] [CrossRef]
- Houghton, D.D.; Kasahara, A. Nonlinear shallow fluid flow over an isolated ridge. Commun. Pure Appl. Math 1968, 11, 1–23. [Google Scholar] [CrossRef]
- Sun, W.Y. Hydraulic jump and Bernoulli equation in nonlinear shallow water model. Dyn. Atmos. Ocean. 2018, 82, 37–53. [Google Scholar] [CrossRef]
- Sun, W.Y. The Vortex Moving toward Taiwan and the influence of the Central Mountain Range. Geosci. Lett. 2016, 3, 21. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Chen, S.-Y.; Hill, C.M.; Huang, C.-Y. Control parameters for tropical cyclones passing over mesoscale mountains. J. Atmos. Sci. 2005, 62, 1849–1866. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Lin, Y.-L. The influence of mesoscale mountains on vortex tracks: Shallow-water modeling study. Meteor. Atmos. Phys. 2008, 101, 1–20. [Google Scholar] [CrossRef]
- Mastsuno, T. Quasi-geosprophic motions in the equator area. J. Meteor. Soc. Jpn. 1966, 44, 25–43. [Google Scholar] [CrossRef]
- Sun, W.Y.; Chern, J.D. Numerical experiments of vortices in the wake of idealized large mountains. J. Atmos. Sci. 1994, 51, 191–209. [Google Scholar] [CrossRef]
- Sun, W.Y.; Sun, O.M.T. Bernoulli equation and flow over a mountain. Geosci. Lett. 2015, 2, 7. [Google Scholar] [CrossRef]
- Wu, C.C.; Li, T.-H.; Huang, Y.-H. Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci. 2015, 72, 3032–3050. [Google Scholar] [CrossRef]
- Sun, W.Y.; Oh, T.J. Vortex Merger in Shallow Water Model. Asia-Pac. J. Atmos. Sci. 2022, 58, 533–547. [Google Scholar] [CrossRef]
- Waugh, D.W. The efficiency of symmetric vortex merger. Phys. Fluid Dyn. 1992, 4, 1745–1758. [Google Scholar] [CrossRef]
- Kimura, Y.; Herring, J.R. Gradient enhancement and filament ejection for a non-uniform elliptic vortex in two-dimensional turbulence. J. Fluid Mech. 2001, 439, 43–56. [Google Scholar] [CrossRef]
- Cerretelli, C.; Williamson, C.H.K. The physical mechanism for vortex merging. J. Fluid Mech. 2003, 475, 41–77. [Google Scholar] [CrossRef]
- Melander, M.V.; McWilliams, J.C.; Zabusky, N.J. Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech. 1987, 178, 137–159. [Google Scholar] [CrossRef]
- Melander, M.V.; Zabusky, N.J.; McWilliams, J.C. Symmetric vortex merger in two dimensions: Causes and conditions. J. Fluid Mech. 1988, 195, 305–340. [Google Scholar] [CrossRef]
- Huang, M.J. The physical mechanism of symmetric vortex merger: A new viewpoint. Phys. Fluids 2005, 17, 1–7. [Google Scholar] [CrossRef]
- Moore, D.W.; Saffman, P.G. The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 1975, 346, 413–425. [Google Scholar]
- Brandt, L.K.; Nomura, K.K. The physics of vortex merger: Further insight. Phys. Fluids 2006, 18, 051701. [Google Scholar] [CrossRef]
- Sun, W.Y.; Chern, J.D. Numerical study of influence of mountain ranges on Mei-yu front. J. Meteorol. Soc. Jpn. 2006, 84, 27–46. [Google Scholar] [CrossRef]
- Fjortoft, R. On the changes in the spectral distribution of kinetic energy for two dimensional nondivergent flow. Tellus 1953, 5, 225–230. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Tnertial renges in two-dimensional turbulence. Phys. Fluid 1967, 10, 1417–1423. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk. SSSR 1941, 31, 99–101. [Google Scholar] [CrossRef]
- Obukhov, A.M. Spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk. SSSR 1941, 32, 22–24. [Google Scholar]
- Eady, E.T. Long wave and cyclone waves. Tellus 1949, 1, 33–52. [Google Scholar] [CrossRef]
- Sun, W.Y. Stability of deep cloud streets. J. Atmos. Sci. 1978, 35, 466–483. [Google Scholar] [CrossRef]
- Malkus, J.S.; Riehl, H. Cloud Structure and Distribuions over the Tropical Pacific Ocean; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 1964; 229p. [Google Scholar]
- Kuo, H.L. Perturbations of plane Couette flow in a stratified fluid and origin of cloud streets. Phys. Fluid 1963, 6, 195–211. [Google Scholar] [CrossRef]
- Sun, W.Y. Rainbands and symmetric instability. J. Atmos. Sci. 1984, 41, 3412–3426. [Google Scholar] [CrossRef]
- Fjortoft, R. Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geofys. Pub. 1950, 17, 1–52. [Google Scholar]
- Ooyama, K. On the stability of baroclinic circular vortex: A sufficient criterion for instability. J. Atmos. Sci. 1966, 23, 43–53. [Google Scholar] [CrossRef]
- Hoskins, B.J. Baroclinic Instability and Frontogensis in Rotating Fluids in Geophysics; Roberts, P.H., Ed.; Academic Press: Cambridge, MA, USA, 1978; pp. 171–204. [Google Scholar]
- Sun, W.Y. Convection in the Surface Layer of the Atmosphere. Ph.D. Thesis, The University of Chicago, Chicago, IL, USA, 1975; 130p. [Google Scholar]
- Kuo, H.L.; Sun, W.Y. Convection in the lower atmosphere and its effects. J. Atmos. Sci. 1976, 33, 21–40. [Google Scholar] [CrossRef]
- Agee, E.; Church, C.; Morris, C.; Snow, J. Some synoptic aspects and dynamic features of vortices associated with the tornado outbreak of 3 April 1974. Mon. Wea. Rev. 1975, 103, 318–353. [Google Scholar] [CrossRef]
- Sun, W.Y.; Orlanski, I. Large mesoscale convection and sea breeze circulation. Part I: Linear stability analysis. J. Atmos. Sci. 1981, 38, 1675–1693. [Google Scholar] [CrossRef]
- Sun, W.Y.; Orlanski, I. Large mesoscale convection and sea breeze circulation. Part 2: Non-Linear numerical model. J. Atmos. Sci. 1981, 38, 1694–1706. [Google Scholar] [CrossRef]
- Orlanski, I.; Polinsky, L.J. Spectral distribution of cloud cover over Africa. J. Meteor. Soc. 1977, 55, 483–494. [Google Scholar] [CrossRef]
- Sun, W.Y. Unsymmetrical symmetric instability. Q. J. R. Meteorol. Soc. 1995, 121, 419–431. [Google Scholar] [CrossRef]
- Sun, W.Y.; Sun, O.M. Inertia and diurnal oscillations of Ekman layers in atmosphere and ocean. Dyn. Atmos. Ocean. 2020, 90, 289. [Google Scholar] [CrossRef]
- Blackadar, A.K. Boundary layer wind maxima and their significance for the growth of nocturnal inversion. Bull. Am. Meteorol. Soc. 1957, 38, 283–290. [Google Scholar] [CrossRef]
- Palmer, E.; Newton, C.W. Atmospheric Circulation Systems; Academic Press: London, UK, 1969; 606p. [Google Scholar]
- Price, J.F.; Weller, R.A.; Pinkel, R. Diurnal cycling: Observations and models of the upper ocean response to heating, cooling, and wind mixing. J. Geophys. Res. 1986, 91, 8411–8427. [Google Scholar] [CrossRef]
- Kalashnik, M.V. Resonant excitation of baroclinic waves in the presence of Ekman friction. Izvestiya. Atmos. Ocean. Phys. 2018, 54, 109–113. [Google Scholar] [CrossRef]
- Brown, R.A. A secondary flow model for the planetary boundary layer. J. Atmos. Sci. 1970, 27, 742–757. [Google Scholar] [CrossRef]
- Polton, J.A.; Lenn, Y.D.; Elipot, S.; Chereskin, T.K.; Sprintall, J. Can Drake Passage observations match Ekman’s classic theory? J. Phys. Oceanogr. 2013, 43, 1733–1740. [Google Scholar] [CrossRef]
- Chereskin, T.K. Direct evidence for an Ekman balance in the California Current. J. Geo. Res. 1995, 100, 261–269. [Google Scholar] [CrossRef]
- Price, J.F.; Sundermeyer, M.A. Stratified Ekman layers. J. Geoph. Res. 1999, 104, 20467–20494. [Google Scholar] [CrossRef]
- Lenn, Y.-D.; Chereskin, T.K. Observations of Ekman currents in the Southern Ocean. J. Phys. Ocean. 2009, 39, 768–799. [Google Scholar] [CrossRef]
- Fujita, T.T. Structure and movement of a dry front. Bull. Am. Meteor. Soc. 1958, 39, 574–582. [Google Scholar] [CrossRef]
- Wexler, H. A boundary layer interpretation of low-level jet. Tellus 1961, 12, 268–378. [Google Scholar]
- Sun, W.Y.; Ogura, Y. Boundary layer forcing as a possible trigger to a squall-line formation. J. Atmos. Sci. 1979, 36, 235–254. [Google Scholar] [CrossRef]
- Sun, W.Y.; Wu, C.C. Formation and diurnal oscillation of dryline. J. Atmos. Sci. 1992, 49, 1606–1619. [Google Scholar] [CrossRef]
- Sun, W.Y.; Ogura, Y. Modeling the evolution of the convective planetary boundary layer. J. Atmos. Sci. 1980, 37, 1558–1572. [Google Scholar] [CrossRef]
- Deardorff, J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound-Layer Meteor. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Caughey, S.J.; Palmer, S.G. Some aspects of turbulence structure through the depth of the convective layer. Quart. J. Roy. Meteor. Soc. 1979, 105, 811–827. [Google Scholar] [CrossRef]
- Sun, W.Y.; Chang, C.Z. Diffusion model for a convective layer: Part 1. Numerical simulation of a convective boundary layer. J. Clim. Appl. Meteor. 1986, 25, 1445–1453. [Google Scholar] [CrossRef]
- Sun, W.Y. Air pollution in a convective boundary. Atmos. Environ. 1986, 20, 1877–1886. [Google Scholar] [CrossRef]
- Chern, J.D. Numerical Simulation of Cyclogenesis over the Western United States. Ph.D. Thesis, Purdue University, W. Lafayette, IN, USA, 1994; 178p. [Google Scholar]
- Chen, S.H.; Sun, W.Y. A one-dimensional time dependent cloud model. J. Meteor. Soc. Jpn. 2002, 80, 99–118. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Sun, W.Y. Formation and Verification of a land surface parameterization for atmospheric models. Bound.-Layer Meteorol. 1995, 73, 321–341. [Google Scholar] [CrossRef]
- Chern, J.D.; Sun, W.Y. Formulation and validation of a snow model. In Proceedings of the A11A-06, 1998 Fall Meeting, AGU, Supplement to EOS, AGU, 79, 45, F96, Washingto, DC, USA, 10 November 1998. [Google Scholar]
- Sun, W.Y.; Chern, J.D. One dimensional snow-land surface model applied to Sleepers experiment. Bound.-Layer Meteorol. 2005, 116, 95–115. [Google Scholar] [CrossRef]
- Chou, M.-D.; Suarez, M.J. A solar radiation parameterization for atmospheric studies. NASA Tech. Memo 1994, 15, 40. [Google Scholar]
- Chou, M.-D.; Suarez, M.J.; Liang, X.Z.; Yan, M.H.H. A thermal infrared radiation parameterization for atmospheric sciences. NASA Tech. Memo 2001, 19, 68. [Google Scholar]
- Kuo, H.L. On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci. 1965, 22, 40–63. [Google Scholar] [CrossRef]
- Kuo, H.L. Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci. 1974, 31, 1232–1240. [Google Scholar] [CrossRef]
- Anthes, R.A. A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev. 1977, 105, 270–286. [Google Scholar] [CrossRef]
- Molinari, J. A method for calculating the effects of deep cumulus convection in numerical models. Mon. Wea. Rev. 1982, 110, 1527–1534. [Google Scholar] [CrossRef]
- Sun, W.Y. A forward-backward time integration scheme to treat internal gravity waves. Mon. Wea. Rev. 1980, 108, 402–407. [Google Scholar] [CrossRef]
- Sun, W.Y. Numerical experiments for advection equation. J. Comput. Phys. 1993, 108, 264–271. [Google Scholar] [CrossRef]
- Sun, W.Y.; Yeh, K.S.; Sun, R.Y. A simple Semi-Lagrangian Scheme for advection equation. Q. J. R. Meteorol. Soc. 1996, 122, 1211–1226. [Google Scholar] [CrossRef]
- Sun, W.Y.; Yeh, K.S. A general semi-Lagrangian advection scheme employing forward trajectories. Quart. J. Roy. Meteor. Soc. 1997, 123, 2463–2476. [Google Scholar] [CrossRef]
- Sun, W.Y.; Sun, O.M.T. Mass Correction Applied to Semi-Lagrangian Advection Scheme. Mon. Wea. Rev. 2004, 132, 975–984. [Google Scholar] [CrossRef]
- Sun, W.Y. Pressure gradient in a sigma coordinate. Terr. Atmos. Ocean. Sci. 1995, 4, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.J.-S. Numerical Simulations of Asian Aerosols and Their Regional Climatic Impacts: Dust Storms and Bio-Mass Burning. Master’s Thesis, Purdue University, W. Lafayette, IN, USA, 2004; 141p. [Google Scholar]
- Yang, K.J.-S. Regional Climate-Chemistry Model Simulations of Ozone in the Lower Troposphere and Its Climatic Impacts. Ph.D. Thesis, Purdue University, W. Lafayette, IN, USA, 2004; 157p. [Google Scholar]
- Schaefer, J.T. The life cycle of the dryline. J. Appl. Meteorol. Climatol. 1974, 13, 444–449. [Google Scholar] [CrossRef]
- Sun, W.Y.; Chern, J.D. Diurnal variation of lee-vortexes in Taiwan and surrounding area. J. Atmos. Sci. 1993, 50, 3404–3430. [Google Scholar] [CrossRef]
- Sun, W.Y.; Chern, J.D.; Wu, C.C.; Hsu, W.R. Numerical simulation of mesoscale circulation in Taiwan and surrounding area. Mon. Wea. Rev. 1991, 119, 2558–2573. [Google Scholar] [CrossRef]
- Kuo, Y.; Chen, G. The Taiwan Area Mesoscale Experiment (TAMEX): An overview. Bull. Am. Meteor. Sci. 1990, 71, 488–503. [Google Scholar] [CrossRef]
- Hsu, W.R.; Sun, W.Y. A numerical study of a low-level jet and its accompanying secondary circulation in a Mei-Yu system. Mon. Wea. Rev. 1994, 122, 324–340. [Google Scholar] [CrossRef]
- Haines, P.A.; Chern, J.D.; Sun, W.Y. Numerical simulation of the valentine’s Day storm during WISP 1990. Tellus 1997, 49, 595–612. [Google Scholar] [CrossRef]
- Yildirim, A. Numerical Study of an Idealized Cyclone Evolution and Its Subsynoptic Features. Ph.D. Thesis, Purdue University, W. Lafayette, IN, USA, 1994; 145p. [Google Scholar]
- Bosilovich, M.G.; Sun, W.-Y. Numerical simulation of the 1993 Midwestern Flood: Local and remote sources of water. J. Geophys. Res. 1999, 104, 415–423. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Sun, W.-Y. Numerical simulation of the 1993 Midwestern flood: Land-Atmosphere Interactions. J. Clim. 1999, 12, 1490–1505. [Google Scholar] [CrossRef]
- Oglesby, R.J.; Erikson, D. Soil moisture and persistence of North American drought. J. Clim. 1989, 2, 1362–1380. [Google Scholar] [CrossRef]
- Oglesby, R.J.; Leap, D.I.; Sun, W.Y.; Agee, E.M. Modeling the effects of climatic changes on availability and quality of water. Comput. Mech. 1994, 2, 9–17. [Google Scholar]
- Sun, W.Y.; Bosilovich, M.G.; Chern, J.D. CCM1 regional response to anomalous surface properties. Terr. Atmos. Ocean. Sci. 1997, 8, 271–288. [Google Scholar] [CrossRef]
- Sun, W.Y.; Chern, J.D.; Bosilovich, M. Numerical Study of the 1988 Drought in the United States. J. Meteorol. Soc. Jpn. 2004, 82, 1667–1678. [Google Scholar] [CrossRef]
- Bosilovich, M.B.; Sun, W.Y. Simulation of soil moisture and temperature. J. Atmos. Sci. 1998, 55, 1170–1183. [Google Scholar] [CrossRef]
- Sun, W.Y.; Bosilovich, M.G. Planetary boundary layer and surface layer sensitivity to land surface parameters. Bound.-Layer Meteorol. 1996, 77, 353–378. [Google Scholar] [CrossRef]
- Sun, W.Y. Chapter 6. Interactions among atmosphere, soil, and vegetation. In Applications and Development of Agrometeorology; Yang, L., Ed.; Taiwan Agricultural Research Institute and Chinese Society of Agrometeorology: Taipei, Taiwan, 2001; pp. 69–92. [Google Scholar]
- Jordan, R. A One-Dimensional Temperature Model for a Snow Cover; Special Report 91-16; U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1991; 49p. [Google Scholar]
- Johansen, O. Thermal Conductivity of Soils. Ph.D. Thesis, Trondheim University, Trondheim, Norway, 1975. [Google Scholar]
- Farouki, O. Evaluation of Methods for Calculating Soil Thermal Conductivity; CRREL Rep. 82-8; CRREL: Hanover, NH, USA, 1982; 90p. [Google Scholar]
- Clapp, R.B.; Hornberg, G.M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 1978, 13, 601–604. [Google Scholar] [CrossRef]
- Dingman, S.L. Physical Hydrology, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; 646p. [Google Scholar]
- Verseghy, D.L. CLASS- A Canadian land surface scheme for GCMS. I: Soil model. Int. J. Climatol. 1991, 11, 111–133. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK, 1988; 464p. [Google Scholar]
- Bohren, C.; Barkstrom, B. Theory of the optical properties of snow. J. Geophys. Res. 1974, 79, 4527–4535. [Google Scholar] [CrossRef]
- Anderson, E.A.; Greenan, H.J.; Whipkey, R.Z.; Machell, C.T. 1977: NOAA-ARS cooperative snow research project—Watershed hydro-climatology and data for water year 1960–1974. NOAA Tech. Rep. 1977, 316. Available online: https://onlinebooks.library.upenn.edu/webbin/book/lookupid?key=olbp53867 (accessed on 25 July 2023).
- Yen, Y.C. Heat Transfer Characteristics of Naturally Compacted Snow; Research Report 166; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1965; 9p. [Google Scholar]
- Anderson, E.A. A Point Energy Balance Model for a Snow Cover; NOAA Tech. Rep. NWS 19; Office of Hydrology, National Weather Service: Chanhassen, MN, USA, 1976.
- LaChapelle, E.R. Field Guide to Snow Crystals; University of Washington Press: Seattle, WA, USA; London, UK, 1969; 101p. [Google Scholar]
- Lynch-Stieglitz, M. The development and validation of a simple snow model for GISS GCM. J. Clim. 1994, 7, 1842–1855. [Google Scholar] [CrossRef]
- Pitman, A.J.; Yang, Z.-L.; Cogley, J.G.; Henderson-Sellers, A. Description of Bare Essentials of Surface Transfer for the Bureau of Meteorological Research Centre AGCM; BMRC Research Report No. 32; BRMC: Ballarat, Australia, 1991; 117p. [Google Scholar]
- Sun, W.Y.; Chern, J.D. One-Dimensional Sea Ice-Ocean Model Applied to SHEBA Experiment in 1997–1998 Winter: Terr. Atmos. Ocean. Sci. 2010, 21, 1–15. [Google Scholar] [CrossRef]
- Min, K.H. Coupled Cryosphere Model Development for Regional Climate Study and the Initialization of Purdue Regional Model with the Land Data Assimilation System. Ph.D. Thesis, Purdue University, W. Lafayette, IN, USA, 2005; 149p. [Google Scholar]
- Min, K.-H.; Sun, W.Y. Atmosphere-Cryosphere Coupled Model Development and Its Application for Regional Climate Studies. Adv. Meteorol. 2015, 2015, 764970. [Google Scholar] [CrossRef]
- Yu, Y.C.; Hsu, H.H.; Kau, W.S.; Tsou, T.H.; Hsu, W.R.; Sun, W.Y. An evaluation of the East Asian summer monsoon simulation by the Purdue Regional Model. J. Environ. Prot. Soc. Taiwan 2004, 27, 41–56. [Google Scholar]
- Yu, Y.C.; Hsu, H.-H.; Kau, W.S.; Tsou, T.H.; Hsu, W.R.; Sun, W.Y.; Yu, W.N. An evaluation of the east Asian summer monsoon simulation using the Purdue Regional Model. In Proceedings of the Third Workshop on Regional Climate Modeling for Monsoon System, Honolulu, HI, USA, 17 February 2004. 23p. [Google Scholar]
- Hsu, W.-R.; Hou, J.P.; Wu, C.C.; Sun, W.Y.; Tcheng, S.C.; Chang, H.Y. Large-eddy simulation of cloud streets over the East China Sea during cold-air outbreak events, pm.2.4. In Proceedings of the 16th Symposium on Boundary Layers and Turbulence, Portland, ME, USA, 9–13 August 2004; pp. 1–7. [Google Scholar]
- Sun, W.Y.; Min, K.H.; Chern, J.-D. Numerical study of 1998 flooding in East Asia. Asia-Pac. J. Atmos. Sci. 2011, 47, 123–135. [Google Scholar] [CrossRef]
- Molinari, J.; Dudek, M. Parameterization of Convective Precipitation in Mesoscale Numerical Models: A Critical Review. Mon. Wea. Rev. 1992, 120, 326–344. [Google Scholar] [CrossRef]
- Shen, B.W. Aggregated negative feedback in a generalized Lorenz model. Int. J. Bifurc. Chaos 2019, 29, 1950037–1950091. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 2001, 106, 255–273. [Google Scholar] [CrossRef]
- DeFries, R.S.; Townshend, J.R.G. NDVI-derived land cover classification a global scale. Int. J. Remote Sens. 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- Tegen, I.; Fung, I. Contribution to the atmospheric mineral aerosol load from land surface modification. J. Geophys. Res. 1995, 100, 707–726. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle, I, Design of a soil-derived dust emission scheme. J. Geophys. Res. 1995, 100, 16415–16430. [Google Scholar] [CrossRef]
- Sun, W.Y.; Yang, K.J.-S.; Lin, N.-H. Numerical Simulations of Asian Dust-Aerosols and Regional Impacts on Weather and Climate-Part I: Control Case-PRCM Simulation without Dust-Aerosols. Aerosol Air Qual. Res. 2013, 13, 1630–1640. [Google Scholar] [CrossRef]
- Sun, W.Y.; Yang, K.J.-S.; Lin, N.-H. Numerical Simulations of Asian Dust-Aerosols and Regional Impacts on Weather and Climate-Part II: PRCM-Dust Model Simulation. Aerosol Air Qual. Res. 2013, 13, 1641–1654. [Google Scholar] [CrossRef]
- Koepke, P.; Hess, M.; Schult, I.; Shettle, E.P. Global Aerosol Data Set; Tech. Rcp. 243; Max Planck Inst. for Meteorol: Hamburg, Germany, 1997; 44p. [Google Scholar]
- Myhre, G.; Stordal, F. Global Sensitivity Experiments of the Radiative Forcing due to Mineral Aerosols. J. Geophys. Res. 2001, 106, 18193–18204. [Google Scholar] [CrossRef]
- Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; et al. Asian Dust Events of April 1998. J. Geophys. Res. 2001, 106, 18317–18330. [Google Scholar] [CrossRef]
- In, H.J.; Park, S.U. A Simulation of Long-range Transport of Yellow Sand Observed in April 1998 in Korea. Atmos. Environ. 2002, 36, 4173–4187. [Google Scholar] [CrossRef]
- Wu, C.C.; Yu, Y.C.; Hsu, W.R.; Hsu, K.J.; Sun, W.Y. Numerical Study on the Wind Fields and Atmospheric Transports of a Typical Winter Case in Taiwan and Surrounding Area. Atmos. Sci. 2003, 31, 29–54. (In Chinese) [Google Scholar]
- Sun, W.Y. Uncertainties in Climate Models, 10th ed.; McGraw-Hill Encyclopedia of Sciences & Technology: New York, NY, USA, 2006. [Google Scholar]
- Hsu, W.R.; Sun, W.Y. Numerical study of mesoscale cellular convection. Bound.-Layer Meteor. 1991, 57, 167–186. [Google Scholar] [CrossRef]
- Hsu, W.-R.; Sun, W.Y. Reply to “Comment on the numerical study of mesoscale cellular convection”. Bound.-Layer Meteorol. 1992, 60, 405–406. [Google Scholar] [CrossRef]
- Laprise, R. The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Wea. Rev. 1992, 120, 197–207. [Google Scholar] [CrossRef]
- Yeh, K.S.; Cote, J.; Gravel, S.; Methot, A.; Patoine, A.; Roch, M.; Staniforth, A. The CMC–MRB Global Environmental Multiscale (GEM) Model. Part III: Nonhydrostatic Formulation. Mon. Wea. Rev. 2002, 130, 339–356. [Google Scholar] [CrossRef]
- Janjic, Z.I. Nonhydrostatic model based on a new approach. Meteorol. Atmos. Phys. 2003, 82, 271–285. [Google Scholar] [CrossRef]
- Chen, S.H.; Sun, W.Y. The applications of the multigrid method and a flexible hybrid coordinate in a nonhydrostatic model. Mon. Wea. Rev. 2001, 129, 2660–2676. [Google Scholar] [CrossRef]
- Ogura, Y.; Phillips, N.A. Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 1962, 19, 173–179. [Google Scholar] [CrossRef]
- MacDonald, A.E.; Lee, J.L.; Sun, S. QNH: Design and test of a quasi-nonhydrostatic model for mesoscale weather prediction. Mon. Wea. Rev. 2000, 128, 1016–1036. [Google Scholar] [CrossRef]
- Klemp, J.; Wiehelmson, R. The Simulation of Three-Dimensional Convective Storm Dynamics. J. Atmos. Sci. 1978, 35, 1070–1096. [Google Scholar] [CrossRef]
- Sun, W.Y.; Hsu, W.R. Effect of surface friction on downslope wind and mountain waves. Terr. Atmos. Ocean. Sci. 2005, 16, 393–418. [Google Scholar] [CrossRef]
- Hsu, W.R.; Sun, W.Y. A time-split, forward-backward numerical model for solving a nonhydrostatic and compressible system of equations. Tellus 2001, 53, 279–299. [Google Scholar] [CrossRef]
- Hsu, H.H.; Yu, Y.C.; Kau, W.S.; Hsu, W.R.; Sun, W.Y. Simulation of the 1998 East Asian summer monsoon using Purdue regional model. J. Meteor. Soc. Jpn. 2004, 82, 1715–1733. [Google Scholar] [CrossRef]
- Sun, W.Y.; Hsu, W.R.; Chern, J.-D.; Chen, S.H.; Yang, K.J.-S.; Yeh, K.; Bosilovich, M.G.; Haines, P.A.; Min, K.-H.; Oh, T.-J.; et al. Purdue atmospheric models and applications. In Recent Progress in Atmospheric Sciences: Applications to the Asia-Pacific Region; Liao, K.N., Chou, M.D., Eds.; World Scientific Publishing: Singapore, 2009; 496p, pp. 200–230. [Google Scholar]
- Hsieh, M.N. A Monotone Semi-Lagrangian Advection Scheme in a 3D Nonhydrostatic Model and Applications in Squall Line Simulations. Ph.D. Thesis, NTU, Taipei, Taiwan, 2006; 146p. (In Chinese). [Google Scholar]
- Hsieh, M.-E.; Hsu, W.R.; Sun, W.Y. Applications of a three-dimensional nonhydrostatic atmospheric model on uniform flows over an idealized mountain. In Proceedings of the 2010 Computational Fluid Dynamics Taiwan, Chung-Li, Taiwan, 29–31 July 2010; pp. 1–12. [Google Scholar]
- Tsuboki, K.; Sakakibara, A. Numerical Prediction of High-Impact Weather Systems. In The Seventeenth IHP Training Course (International Hydrological Program); Nagoya University and UNESCO HYARC: Nagoya, Japan, 2007; 273p. [Google Scholar]
- Sun, W.Y.; Sun, O.M.T.; Tsuboki, K. A Modified Atmospheric Nonhydrostatic Model on Low Aspect Ratio Grids. Tellus A 2012, 64, 17516. [Google Scholar] [CrossRef]
- Sun, W.Y.; OSun, M.; Tsuboki, K. A Modified Atmospheric Nonhydrostatic Model on Low Aspect Ratio Grids-Part II. Tellus A 2013, 65, 19681. [Google Scholar] [CrossRef]
- Kasahara, A. Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev. 1974, 102, 509–522. [Google Scholar] [CrossRef]
- Sun, W.Y. Numerical simulation of a planetary boundary layer: Part I. Cloud free case. Beitr. Phys. Atmos. 1993, 66, 3–16. [Google Scholar]
- Sun, W.Y. An Efficient Forward Semi-Lagrangian Model. Open J. Fluid Dyn. (OJFD) 2023. accepted. [Google Scholar]
- Doswell, C.A., III. A kinematic analysis associated with a nondivergent vortex. J. Atmos. Sci. 1984, 41, 1242–1248. [Google Scholar] [CrossRef]
- Sun, W.Y.; Sun, O.M.T. Revisiting the parcel method and CAPE. Dyn. Atmos. Ocean. 2019, 86, 134–152. [Google Scholar] [CrossRef]
- Queney, P. The problem of airflow over mountains: A summary of theoretical studies. Bull. Am. Meteor. Soc. 1948, 29, 16–26. [Google Scholar] [CrossRef]
- Queney, P.; Corby, G.A.; Gerbier, N.; Koschmieder, H.; Zierep, J. The airflow over mountains. WMO Tech. 1960, 34, 135. [Google Scholar]
- Long, R.R. Some aspects of the flow of stratified fluids. Part I. A theoretical investigation. Tellus 1953, 5, 42–58. [Google Scholar] [CrossRef]
- Long, R.R. A laboratory model resembling the Bishop-waves phenomena. Bull. Am. Meteorol. Soc. 1953, 34, 205–211. [Google Scholar] [CrossRef]
- Smith, R.B. On severe downslope winds. J. Atmos. Sci. 1985, 42, 2597–2603. [Google Scholar] [CrossRef]
- Clark, T.L.; Peltier, W.R. Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci. 1984, 41, 3122–3134. [Google Scholar] [CrossRef]
- Peltier, W.R.; Clark, T.L. The evolution and stability of finite-amplitude mountain waves. Part II: Surface drag and severe downslope windstorms. J. Atmos. Sci. 1979, 36, 1498–1529. [Google Scholar] [CrossRef]
- Doyle, J.D.; Durran, D.R.; Chen, C.; Colle, B.A.; Georgelin, M.; Grubisic, V.; Hsu, W.R.; Huang, C.Y.; Landau, D.; Lin, Y.L.; et al. An intercomparison of model predicted wave breaking for the 11 January 1972 Boulder windstorm. Mon. Wea. Rev. 2000, 128, 901–914. [Google Scholar] [CrossRef]
- Sun, W.Y. Numerical Study of Severe Downslope Storm. Weather Clim. Extrem. 2013, 2, 22–30. [Google Scholar] [CrossRef]
- Lilly, O.K. A severe downslope windstorm and aircraft turbulence induced by a mountain wave. J. Atmos. Sci. 1978, 35, 59–77. [Google Scholar] [CrossRef]
- Moncrieff, M.W.; Green, J.S.A. The propagation and transfer properties of steady convective overturning in shear. Q. J. R. Meteorol. Soc. 1972, 98, 336–352. [Google Scholar] [CrossRef]
- Riehl, H.; Malkus, J.S. On the heat balance in the equatorial trough zone. Gephysica 1958, 6, 503–538. [Google Scholar]
- Ebert, E.; Holland, G.J. Observations of record cold cloud-top temperatures in tropical cyclone Hilda (1990). Mon. Wea. Rev. 1992, 120, 2240–2251. [Google Scholar] [CrossRef]
- Black, R.A.; Bluestein, H.B.; Black, M.L. Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev. 1994, 122, 2722–3739. [Google Scholar] [CrossRef]
- Sun, W.Y.; Chang, C.Z. Diffusion model for a convective layer: Part II: Plume released from a continuous point source. J. Clim. Appl. Meteor. 1986, 25, 1454–1463. [Google Scholar] [CrossRef]
- Sun, W.Y. Air pollution in a convective atmosphere. In Library of Environmental Control Technology; Cheremisinoff, Ed.; Gulf Publishing: Houston, TX, USA, 1988; pp. 515–546. [Google Scholar]
- Sun, W.Y. Diffusion modeling in a convective boundary layer. Atmos. Environ. 1989, 23, 1205–1217. [Google Scholar]
- Haines, P.A.; Sun, W.Y.; Chen, S.H.; Hsu, W.R.; Hsieh, M.E. NTU/PU model simulations and observed flow over mountain. Terr. Atmos. Ocean. Sci. 2019, 30, 171–184. [Google Scholar] [CrossRef]
- Gal-Chen, T.; Somerville, R.C.J. Numerical solution of the Navier-Stokes equations with topography. J. Comput. Phys. 1975, 17, 276–309. [Google Scholar] [CrossRef]
- Haines, P.A.; Grove, D.J.; Sun, W.Y.; Hsu, W.R. Observations and Numerical Modeling of Sub and Super-critical Flow at White Sands Missile Range. In Proceedings of the 12th Conference on Mountain Meteorology, the American Meteorological Society, Santa Fe, NM, USA, 28 August–2 September 2006. [Google Scholar]
- Sun, W.Y. Coordinates over complex terrain in atmospheric model. J. Atmos. Sci. Res. 2021, 4, 3–49. [Google Scholar] [CrossRef]
- Pacanowski, R.C. MOM 2 Documentation User’s Guide and Reference Manual Version 1.0; GFDL Ocean Technical Report #3; GFDL, NOAA: Princeton, NJ, USA, 1995; 233p. [Google Scholar]
- Saito, K.; Kato, K.T.; Eito, H.; Muroi, C. Numerical Prediction Division Unified Nonhydrostatic Model; MRI Report 42; Documentation of the Meteorological Research Institute: Singapore, 2001; 133p.
- Staniforth, A.; White, W.; Wood, N.; Thuburn, J.; Zerroukat, M.; Corderro, E. Unified Model Documentation Paper. No. 15. Joy of U.M. 6.0-Model Formulation. Dynamics Research Numerical Weather Prediction; Met Office: Devan, UK, 2004.
- Lin, M.-Y.; Sun, W.Y.; Chiou, M.-D.; Chen, C.-Y.; Cheng, H.-Y.; Chen, C.-H. Development and evaluation of a storm surge warning system in Taiwan. Ocean. Dyn. 2018, 68, 1025–1049. [Google Scholar] [CrossRef]
- Pielke, R.A.; Cotton, W.R.; Walko, R.L.; Tremback, C.J.; Lyons, W.A.; Grasso, L.D.; Nicholls, M.E.; Moran, M.D.; Wesley, D.A.; Lee, T.J.; et al. A comprehensive meteorological modeling system-RAMS. Meteor. Atmos. Phys. 1992, 49, 69–91. [Google Scholar] [CrossRef]
- Kapitza, H.; Eppel, D.P. The non-hydrostatic mesoscale GESIMA. Part I: Dynamical equations and tests. Beitr. Phys. Atmos. 1992, 65, 129–145. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of Advanced Research WRF Version 3; NCAR/TN–475+STR; NCAR: Boulder, CO, USA, 2008; 113p. [Google Scholar]
- MacCall, B.-T.; Wang, Y.; Sun, W.Y. A New Semi-Implicit Time Integration Scheme for the Time-Dependent Atmospheric Boundary Layer Environment (ABLE) Model; ARL-TR-7428; ARL: Aberdeen Proving Ground, MD, USA, 2015. [Google Scholar]
- Sun, W.Y. Numerical simulation of a planetary boundary layer: Part II. Cloudy case. Beitr. Phys. Atmos. 1993, 66, 17–30. [Google Scholar]
- Deardorff, J.W.; Willis, G.E. A parameterization of diffusion into the mixed layer. J. Appl. Met. 1975, 14, 1451–1458. [Google Scholar] [CrossRef]
- Willis, G.E.; Deardorff, J.W. A laboratory study of dispersion from an elevated source within a modeled convective planetary boundary layer. Atmos. Environ. 1978, 12, 1305–1311. [Google Scholar] [CrossRef]
- Willis, G.E.; Deardorff, J.W. A laboratory study of dispersion from a source in the middle of the convective mixed layer. Atmos. Environ. 1981, 15, 109–117. [Google Scholar] [CrossRef]
- Sun, W.Y.; Sun, O.M.T. Backward integration of diffusion equation. Aerosol Air Qual. Res. 2017, 17, 278–289. [Google Scholar] [CrossRef]
- Arnold, V.I.; Avez, A. Problèmes Ergodiques de la Mécanique Classique; Gauthier-Villars: Paris, France, 1967. (In French) [Google Scholar]
- Strogatz, S.H. Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry, and Engineering; Westpress View: Boulder, CO, USA, 2015; 513p. [Google Scholar]
- Lyapunov, A.M. Problème général de la stabilité du mouvement. Ann. Fac. Sci. Toulouse Mathématiques Série 2 1947, 9, 203–474. [Google Scholar]
- Lorenz, E.N. Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? In Proceedings of the 139th Meeting of AAAS Section on Environmental Sciences, New Approaches to Global Weather: GARP, AAAS, Cambridge, MA, USA, 29 December 1972. 5p. [Google Scholar]
- Lorenz, E.N. Atmospheric predictability experiments with a large numerical model. Tellus 1982, 34, 505–513. [Google Scholar] [CrossRef]
- Sun, W.Y.; Hsu, W.R.; Haines, P.K.; Hsieh, M.E.; Chen, S.H.; Grove, D. Numerical simulations over mountains. In Proceedings of the Third International Workshop on Next- Generation NWP Models: Bridging Parameterization, Explicit Clouds and Large Eddies, Jeju Island, Republic of Korea, 29 August–1 September 2010. [Google Scholar]
- Kreiss, H.-O.; Lorenz, J. Initial-Boundary Value Problems and the Navier-Stokes Equations; SIAM, Publications Library: Philadelphia, PA, USA, 2004; 488p. [Google Scholar]
λ | 2Δx | 3Δx | 4Δx | 5Δx | 6Δx | 7Δx | 8Δx | 9Δx | 10Δx | |
---|---|---|---|---|---|---|---|---|---|---|
Co | ||||||||||
0.250 | 0.643 | 0.834 | 0.905 | 0.939 | 0.957 | 0.969 | 0.976 | 0.981 | 0.985 | |
0.500 | 0.667 | 0.855 | 0.920 | 0.950 | 0.965 | 0.975 | 0.981 | 0.985 | 0.988 | |
0.750 | 0.613 | 0.900 | 0.949 | 0.969 | 0.979 | 0.985 | 0.988 | 0.991 | 0.993 | |
1.00 | 0.000 | 0.500 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
(a) | R (km) | H (m) | f (10−5 s−1) | hm(m) | vel (m/s) | N or. g′ | Ro | LR | Frm | Fr∝ |
---|---|---|---|---|---|---|---|---|---|---|
Atm | R* = 120 | H* = 104 | 5.783 | = 3500 | U* = 4 | N = 10−2 s−1 | U*/f*R* = 0. 58 | NH*/(f*R*) = 102/(f*R*) = 14.41 | U*/(Nhm) = U/(35 ms−1) = 0.11 | U*/(NH*) = 0.04 |
Water | R = 24 | H = 100 | 5.783 | hm = 10 | U = 0.8 | g′ = 4 m s−2 | U/fR = 0.58 | = 20/(fR) = 14.41 | = 0.2 U*/6.3 = U/(32 ms−1) = 0.12 | = 0.04 |
(b) | R (km) | H (m) | f (10−5 s−1) | hm(m) | vel (m/s) | N or. g′ | Ro | LR | Frm | Fr∝ |
Atm | R* = 200 | 104 | 5.783 | = 3500 | U* = 6 | N = 10−2 s−1 | U*/f*R* = 0.52 | NH*/(f*R*) = 8.65 | U*/(Nhm) = 0.17 | U*/(NH*) = 0.06 |
Water | R = 40 | H* = 100 | 5.783 | hm = 10 | U = 1.2 | g′ = 4 m s−2 | U/fR = 0.53 | = 8.65 | = 0.19 | = 0.06 |
Climatological Pattern Correlation of PRCM | |||||
---|---|---|---|---|---|
MJJA | May | Jun | Jul | Aug | |
MSLP | 0.98 | 0.96 | 0.98 | 0.97 | 0.96 |
TEM2M | 0.99 | 0.99 | 0.99 | 0.97 | 0.97 |
850T | 0.87 | 0.97 | 0.90 | 0.73 | 0.59 |
200T | 0.88 | 0.83 | 0.83 | 0.94 | 0.94 |
850Z | 0.97 | 0.96 | 0.99 | 0.98 | 0.97 |
200Z | 0.96 | 0.99 | 0.98 | 0.94 | 0.77 |
850Q | 0.96 | 0.98 | 0.96 | 0.95 | 0.91 |
200Q | 0.84 | 0.93 | 0.80 | 0.70 | 0.71 |
PRECIP | 0.35 | 0.37 | 0.52 | 0.27 | 0.29 |
PRECIP | |||||
(bias removed) | 0.72 | 0.89 | 0.90 | 0.85 |
FIELD | LEVEL | BIAS | RMS | COR |
---|---|---|---|---|
Mean Sea Level Pressure (hPa) Air Qv (kg/kg) Temperature (K) Wind speed (ms−1) Precipitation (mmday−1) | SFC | −0.48 | 1.57 | 0.95 |
2.45 × 10−3 | 2.81 × 10−3 | 0.96 | ||
0.73 | 1.75 | 0.97 | ||
0.78 | 1.26 | 0.84 | ||
0.95 | 1.38 | 0.73 | ||
Height (m) | 200 hPa | 37 | 45.1 | 0.99 |
500 hPa | 12.5 | 17.7 | 0.98 | |
850 hPa | 0.25 | 10.3 | 0.97 | |
Temperature (K) | 200 hPa | 0.74 | 1.17 | 0.9 |
500 hPa | 0.63 | 0.86 | 0.98 | |
850 hPa | 0.13 | 1.22 | 0.94 | |
Qv (kg/kg) | 500 hPa | −1.34 × 10−4 | 6.59 × 10−4 | 0.83 |
700 hPa | 3.01 × 10−4 | 1.22 × 10−3 | 0.82 | |
850 hPa | 1.13 × 10−3 | 1.61 × 10−3 | 0.92 | |
Wind speed (ms−1) | 200 hPa | −1.60 | 3.98 | 0.91 |
500 hPa | −0.72 | 2.14 | 0.8 | |
850 hPa | 1.28 | 2.16 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.-Y. Challenges and Progress in Computational Geophysical Fluid Dynamics in Recent Decades. Atmosphere 2023, 14, 1324. https://doi.org/10.3390/atmos14091324
Sun W-Y. Challenges and Progress in Computational Geophysical Fluid Dynamics in Recent Decades. Atmosphere. 2023; 14(9):1324. https://doi.org/10.3390/atmos14091324
Chicago/Turabian StyleSun, Wen-Yih. 2023. "Challenges and Progress in Computational Geophysical Fluid Dynamics in Recent Decades" Atmosphere 14, no. 9: 1324. https://doi.org/10.3390/atmos14091324
APA StyleSun, W. -Y. (2023). Challenges and Progress in Computational Geophysical Fluid Dynamics in Recent Decades. Atmosphere, 14(9), 1324. https://doi.org/10.3390/atmos14091324