Mapping Prediction of Surface Solar Radiation with Linear Regression Models: Case Study over Reunion Island
Abstract
:1. Introduction
2. Dataset and Methodology
2.1. Global Solar Radiation from CM SAF
2.2. Methodology for the 1-Day-Ahead SSR Mapping Prediction
- (1)
- Multiple Linear Regression (MLR)
- (2)
- Principal Component Regression (PCR)
- (3)
- Stepwise Regression (SR)
- (4)
- Partial Least Squares Regression (PLSR)
3. Data Pre-Processing
3.1. Checking the Missing Data
3.2. Daily Scale: Detrended and De-Seasonalized Data
3.3. Dataset Normalization
3.4. PCA Decomposition
4. Prediction Results
4.1. Prediction Results with Four Linear Regression Models
4.2. Score Evaluation: MAE, MSE, and RMSE
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jean, P.P.; Mathieu, D.; Frantz, S.; Dominique, M.; Olivier, M. Renewable energy: Progressing towards a net zero energy island, the case of Reunion Island. Renew. Sustain. Energy Rev. 2012, 16, 426–442. [Google Scholar]
- Chrystel, D.; Vincent, F.; Bruno, T.; Jean-Michel, B.; Bhavani, B. Potential areas of interest for the development of geothermal energy in La Reunion Island based on GIS analysis. J. Volcanol. Geotherm. Res. 2022, 421, 107450.1–107450.13. [Google Scholar]
- Dosseto, A.; Hannan-Joyner, A.; Raines, E.; Gayer, E.; Michon, L. Geochemical evolution of soils on Reunion Island. Geochim. Cosmochim. Acta 2022, 318, 263–278. [Google Scholar] [CrossRef]
- Gueymard, C.A. Direct solar transmittance and irradiance prediction with broadband models. Part I: Detailed theoretical performance assessment. Sol. Energy 2003, 74, 355–379. [Google Scholar] [CrossRef]
- Boata, R.; Pop, N. Estimation of global solar irradiation by using takagi-sugeno fuzzy systems. Rom. J. Phys. 2015, 60, 593–602. [Google Scholar]
- Calinoiu, D.; Stefu, N.; Boata, R.; Blaga, R.; Pop, N.; Paulescu, E.; Sabadus, A.; Paulescu, M. Parametric modeling: A simple and versatile route to solar irradiance. Energy Convers. Manag. 2018, 164, 175–187. [Google Scholar] [CrossRef]
- Chevillon, L.; Tourmetz, J.; Dubos, J.; Soulaimana-Mattoir, Y.; Hollinger, C.; Pinet, P.; Couzi, F.X.; Riethmuller, M.; Le Corre, M. 25 years of light-induced petrel groundings in Reunion Island: Retrospective analysis and predicted trends. Glob. Ecol. Conserv. 2022, 33, e02232. [Google Scholar] [CrossRef]
- Oyewola, O.M.; Patchali, T.E.; Ajide, O.O.; Singh, S.; Matthew, O.J. Global solar radiation predictions in Fiji Islands based on empirical models. Alex. Eng. J. 2022, 61, 8555–8571. [Google Scholar] [CrossRef]
- Bamisile, O.; Oluwasanmi, A.; Ejiyi, C.; Yimen, N.; Obiora, S.; Huang, Q. Comparison of machine learning and deep learning algorithms for hourly global/diffuse solar radiation predictions. Int. J. Energy Res. 2021, 46, 10052–10073. [Google Scholar] [CrossRef]
- Zhang, C.; Hua, L.; Ji, C.; Nazir, M.S.; Peng, T. An evolutionary robust solar radiation prediction model based on WT-CEEMDAN and IASO-optimized outlier robust extreme learning machine. Appl. Energy 2022, 322, 119518. [Google Scholar] [CrossRef]
- Ghimire, S.; Nguyen-Huy, T.; Deo, R.C.; Casillas-Perez, D.; Salcedo-Sanz, S. Efficient daily solar radiation prediction with deep learning 4-phase convolutional neural network, dual stage stacked regression and support vector machine CNN-REGST hybrid model. Sustain. Mater. Technol. 2022, 32, e00429. [Google Scholar] [CrossRef]
- Pang, Z.; Niu, F.; O’Neill, Z. Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons. Renew. Energy 2020, 156, 279–289. [Google Scholar] [CrossRef]
- Nwokolo, S.C.; Obiwulu, A.U.; Ogbulezie, J.C.; Amadi, S.O. Hybridization of statistical machine learning and numerical models for improving beam, diffuse and global solar radiation prediction. Clean. Eng. Technol. 2022, 9, 100529. [Google Scholar] [CrossRef]
- Diagne, M.H.; David, M.; Boland, J.; Schmutz, N.; Lauret, P. Post-processing of Solar Irradiance Forecasts from WRF Model at Reunion Island. In Energy Procedia; Elsevier: Amsterdam, The Netherlands, 2014; Volume 57, pp. 1364–1373. [Google Scholar]
- Lauret, P.; Voyant, C.; Soubdhan, T.; David, M.; Poggi, P. A benchmarking of machine learning techniques for solar radiation forecasting in an insular context. Sol. Energy 2015, 112, 446–457. [Google Scholar] [CrossRef]
- Li, P.; Bessafi, M.; Morel, B.; Chabriat, J.P.; Delsaut, M.; Li, Q. Daily surface solar radiation prediction mapping using artificial neural network: The case study of Reunion Island. J. Sol. Energy Eng. 2019, 142, 21009-1–21009-8. [Google Scholar] [CrossRef]
- Li, P.; Morel, B.; Bessafi, M.; Li, Q.; Chiacchio, M. Radiation budget in RegCM4: Simulation results from two radiative schemes over the South West Indian Ocean. Clim. Res. 2021, 48, 181–195. [Google Scholar] [CrossRef]
- Huld, T.; Müller, R.; Gracia-Amillo, A.; Pfeifroth, U.; Trentmann, J. Surface Solar Radiation Data Set—Heliosat, Meteosat-East (SARAH-E)—Edition 1.1; Satellite Application Facility on Climate Monitoring: Offenbach, Germany, 2017. [Google Scholar] [CrossRef]
- Gracia Amillo, A.; Huld, T.; Müller, R. A new database of global and direct solar radiation using the Eastern Meteosat Satellite, models and validation. Remote Sens. 2014, 6, 8165–8189. [Google Scholar] [CrossRef]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Kutzbach, J.E. Empirical Eigenvectors of Sea-Level Pressure, Surface Temperature and Precipitation Complexes over North America. J. Appl. Meteorol. 1967, 6, 791–802. [Google Scholar] [CrossRef]
- Wilks, P.A.D.; English, M.J. A system for rapid identification of respiratory abnormalities using a neural network. Med. Eng. Phys. 1995, 17, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Badosa, J.; Haeffelin, M.; Chepfer, H. Scales of spatial and temporal variation of solar irradiance on Reunion tropical island. Sol. Energy 2013, 88, 42–56. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Codd, E.F. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 1970, 13, 377–387. [Google Scholar] [CrossRef]
MAE (W/m2) | MSE | RMSE (W/m2) | |
---|---|---|---|
SR | 1.142 × 103 | 2.15× 106 | 1.47 × 103 |
MLR | 1.00 × 103 | 1.58× 106 | 1.26 × 103 |
PCR | 7.97 × 102 | 9.24× 105 | 9.61 × 102 |
PLSR | 1.11 × 103 | 1.93× 106 | 1.39 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Bessafi, M.; Li, P. Mapping Prediction of Surface Solar Radiation with Linear Regression Models: Case Study over Reunion Island. Atmosphere 2023, 14, 1331. https://doi.org/10.3390/atmos14091331
Li Q, Bessafi M, Li P. Mapping Prediction of Surface Solar Radiation with Linear Regression Models: Case Study over Reunion Island. Atmosphere. 2023; 14(9):1331. https://doi.org/10.3390/atmos14091331
Chicago/Turabian StyleLi, Qi, Miloud Bessafi, and Peng Li. 2023. "Mapping Prediction of Surface Solar Radiation with Linear Regression Models: Case Study over Reunion Island" Atmosphere 14, no. 9: 1331. https://doi.org/10.3390/atmos14091331
APA StyleLi, Q., Bessafi, M., & Li, P. (2023). Mapping Prediction of Surface Solar Radiation with Linear Regression Models: Case Study over Reunion Island. Atmosphere, 14(9), 1331. https://doi.org/10.3390/atmos14091331