Investigating the Synergy between CO2 and PM2.5 Emissions Reduction: A Case Study of China’s 329 Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Evaluation Index System
2.3. Data Sources and Processing
2.4. Calculation of the Subsystem Scores
2.4.1. Entropy Method
2.4.2. Comprehensive Evaluation Function
2.5. Evaluation of the Synergy between CER and PER
2.5.1. Coupling Coordination Degree Model
2.5.2. Relative Development Degree Model
2.6. Spatial Autocorrelation Analysis
2.7. Kernel Density Estimation
2.8. Dagum Gini Coefficient
3. Results
3.1. Spatiotemporal Characteristics of Coupling Coordination Level
3.1.1. CCD on the National Scale
3.1.2. CCD on the Regional Scale
3.1.3. CCD on the Urban Scale
3.2. Spatial Autocorrelation of CCD
3.3. Evolutionary Characteristics of CCD
3.4. Reginal Differences in CCD
3.4.1. Intra-Regional Differences
3.4.2. Inter-Regional Differences
3.4.3. Sources of the Overall Difference
4. Discussion
4.1. Explanation for the Spatiotemporal Characteristics of CCD
4.2. Explanation for the Regional Differences in CCD
5. Conclusions and Policy Implications
5.1. Conclusions
- The synergy between CER and PER showed overall upward trends on three scales. On the national scale, the proportions of high-level and extremely high level coordinated cities increased largely, from 1.52% and 0 in 2003 to 31.31% and 58.05% in 2017, respectively. On the regional scale, NE, SC, and EC showed the best performance in CCD, while NW performed worst in CCD. On the urban scale, Shanghai had the lowest CCD values. In addition, from the perspective of the relative development of CER and PER, most cities were in the status of “PER lags” or “synchronous development” during the study period. The ratio of cities in the “synchronous development” status increased from 0.61% in 2003 to 38.60% in 2017.
- The CCD showed an obvious positive spatial autocorrelation. The Global Moran’s I value ranged from 0.0776 to 0.5016, with a mean value of 0.2779. In Moran scatter plots, the cities in the “High–High” or “Low–Low” clustering zones accounted for 71%, 64%, and 75% of all the cities in 2003, 2010, and 2017, respectively, indicating strong clustering characteristics.
- The kernel density curves of CCD in China and the eight regions showed clear “right-shifted” trends and a left-side tailing phenomenon. In particular, due to the extremely lower CCD in individual cities, such as Anshan and Shanghai, NE and EC presented very long left-side tailings. Moreover, the polarization of CCD in SC, MYR, and SW showed intensified trends, while that of NC and NW gradually weakened.
- As for the regional differences, EC showed the largest intra-regional difference, and the difference showed a fluctuating downward trend. The inter-regional difference between EC and NW was the largest, while that between MYR and SW was the smallest. The hypervariable density contributed most to the overall difference, followed by inter-regional and intra-regional differences, indicating that the cross-overlapping problem among the regions should not be overlooked.
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.X.; Xing, L.R. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z.X. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Abbas, A.; Waseem, M.; Ahmad, R.; Khan, K.A.; Zhao, C.Y.; Zhu, J.T. Sensitivity analysis of greenhouse gas emissions at farm level: Case study of grain and cash crops. Environ. Sci. Pollut. Res. 2022, 29, 82559–82573. [Google Scholar] [CrossRef]
- Abbas, A.; Zhao, C.Y.; Waseem, M.; Khan, K.A.; Ahmad, R. Analysis of Energy Input-Output of Farms and Assessment of Greenhouse Gas Emissions: A Case Study of Cotton Growers. Front. Environ. Sci.-Switz. 2022, 9, 826838. [Google Scholar] [CrossRef]
- Guan, Y.; Xiao, Y.; Rong, B.; Lu, W.T.; Zhang, N.N.; Qin, C.B. Assessing the synergy between CO2 emission and ambient PM2.5 pollution in Chinese cities: An integrated study based on economic impact and synergy index. Environ. Impact Asses 2023, 99, 106989. [Google Scholar] [CrossRef]
- Yu, Y.J.; Dai, C.; Wei, Y.G.; Ren, H.M.; Zhou, J.W. Air pollution prevention and control action plan substantially reduced PM2.5 concentration in China. Energy Econ. 2022, 113, 106206. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Wu, Q.; Zhang, Y.; Ouyang, D.; Zheng, H.; Han, L.; Qiu, X.; Wen, Y.; Liu, M.; et al. Emission trends of air pollutants and CO2 in China from 2005 to 2021. Earth Syst. Sci. Data 2023, 15, 2279–2294. [Google Scholar] [CrossRef]
- Harrould-Kolieb, E.R. Framing ocean acidification to mobilise action under multilateral environmental agreements. Environ. Sci. Policy 2020, 104, 129–135. [Google Scholar] [CrossRef]
- Gregg, J.S.; Andres, R.J.; Marland, G. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett. 2008, 35, L08806. [Google Scholar] [CrossRef]
- Wu, J.Q.; Chen, Y.; Yu, L.; Li, J.K. Coupling effects of consumption side renewable portfolio standards and carbon emission trading scheme on China’s power sector: A system dynamic analysis. J. Clean. Prod. 2022, 380, 134931. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health 2015, 37, 631–649. [Google Scholar] [CrossRef]
- Bala, G.P.; Rajnoveanu, R.M.; Tudorache, E.; Motisan, R.; Oancea, C. Air pollution exposure-the (in)visible risk factor for respiratory diseases. Environ. Sci. Pollut. Res. 2021, 28, 19615–19628. [Google Scholar] [CrossRef]
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876. [Google Scholar] [CrossRef]
- McDuffie, E.E.; Martin, R.V.; Spadaro, J.V.; Burnett, R.; Smith, S.J.; O’Rourke, P.; Hammer, M.S.; van Donkelaar, A.; Bindle, L.; Shah, V.; et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 2021, 12, 3594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.H.; Li, Q.; Zhang, R.N. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci. 2014, 57, 26–35. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.L.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.M.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Zhi, G.R.; Zhang, Y.Y.; Sun, J.Z.; Cheng, M.M.; Dang, H.Y.; Liu, S.J.; Yang, J.C.; Zhang, Y.Z.; Xue, Z.G.; Li, S.Y.; et al. Village energy survey reveals missing rural raw coal in northern China: Significance in science and policy. Environ. Pollut. 2017, 223, 705–712. [Google Scholar] [CrossRef]
- Jiang, L.; Bai, L. Spatio-temporal characteristics of urban air pollutions and their causal relationships: Evidence from Beijing and its neighboring cities. Sci. Rep. 2018, 8, 1279. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Pan, X.C.; Guo, X.B.; Li, G.X. Health impact of China’s Air Pollution Prevention and Control Action Plan: An analysis of national air quality monitoring and mortality data. Lancet Planet. Health 2018, 2, E313–E323. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, G.L.; Fu, W. Government environmental governance, structural adjustment and air quality: A quasi-natural experiment based on the Three-year Action Plan to Win the Blue Sky Defense War. J. Environ. Manag. 2021, 277, 111470. [Google Scholar] [CrossRef]
- Yi, H.R.; Zhao, L.J.; Qian, Y.; Zhou, L.X.; Yang, P.L. How to achieve synergy between carbon dioxide mitigation and air pollution control? Evidence from China. Sustain. Cities Soc. 2022, 78, 103609. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, Z.X.; Li, J.Z.; Jia, L. Low-carbon development path research on China’s power industry based on synergistic emission reduction between CO2 and air pollutants. J. Clean. Prod. 2020, 275, 123097. [Google Scholar] [CrossRef]
- Yang, H.C.; Gan, T.; Liang, W.; Liao, X.C. Can policies aimed at reducing carbon dioxide emissions help mitigate haze pollution? An empirical analysis of the emissions trading system. Environ. Dev. Sustain. 2022, 24, 1959–1980. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.; Zhu, J.; Jiang, P.; Lin, H.; Cai, Z.; Huang, H. Achieving co-benefits by implementing the low-carbon city pilot policy in China: Effectiveness and efficiency. Environ. Technol. Innov. 2023, 30, 103137. [Google Scholar] [CrossRef]
- Chen, S.Y.; Wang, C. Health benefits from the reduction of PM2.5 concentrations under carbon tax and emission trading scheme: A case study in China. Environ. Sci. Pollut. Res. 2022, 30, 36631–36645. [Google Scholar] [CrossRef]
- Dong, F.; Yu, B.L.; Pan, Y.L. Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction: Evidence from China. J. Clean. Prod. 2019, 223, 759–771. [Google Scholar] [CrossRef]
- Jia, W.L.; Li, L.; Lei, Y.L.; Wu, S.M. Synergistic effect of CO2 and PM2.5 emissions from coal consumption and the impacts on health effects. J. Environ. Manag. 2023, 325, 116535. [Google Scholar] [CrossRef]
- Shi, Q.; Zheng, B.; Zheng, Y.; Tong, D.; Liu, Y.; Ma, H.; Hong, C.; Geng, G.; Guan, D.; He, K.; et al. Co-benefits of CO2 emission reduction from China’s clean air actions between 2013–2020. Nat. Commun. 2022, 13, 5061. [Google Scholar] [CrossRef]
- Yang, H.Z.; Liu, J.F.; Jiang, K.J.; Meng, J.; Guan, D.B.; Xu, Y.; Tao, S. Multi-objective analysis of the co-mitigation of CO2 and PM2.5 pollution by China’s iron and steel industry. J. Clean. Prod. 2018, 185, 331–341. [Google Scholar] [CrossRef]
- Xing, Y.; Mao, X.; Feng, X.; Gao, Y.; He, F.; Yu, H.; Zhao, M. An effectiveness evaluation of co-controlling local air pollutants and GHGs by implementing Blue Sky Defense Action at city level—A case study of Tangshan city. Chin. J. Environ. Manag. 2020, 12, 20–28. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Y.; Cao, L.; Zhang, J.; Chen, X. Spatio-Temporal Characteristics and Influencing Mechanism of Synergistic Effect of Pollution and Carbon Emission Reduction in China. Res. Environ. Sci. 2022, 35, 2252–2263. [Google Scholar] [CrossRef]
- Nie, C.F.; Lee, C.-C. Synergy of pollution control and carbon reduction in China: Spatial—Temporal characteristics, regional differences, and convergence. Environ. Impact Assess. Rev. 2023, 101, 107110. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Y.; Cai, B.; Guo, J.; Cheng, T.; Zheng, F. Spatial characteristics of CO2 emissions and PM2.5 concentrations in China based on gridded data. Appl. Energy 2020, 266, 114852. [Google Scholar] [CrossRef]
- Yan, D.; Ren, X.H.; Kong, Y.; Ye, B.; Liao, Z.Y. The heterogeneous effects of socioeconomic determinants on PM2.5 concentrations using a two-step panel quantile regression. Appl. Energy 2020, 272, 115246. [Google Scholar] [CrossRef]
- Chen, J.Y.; Luo, W.J.; Ren, X.H.; Liu, T.Q. The local-neighborhood effects of low-carbon city pilots program on PM2.5 in China: A spatial difference-in-differences analysis. Sci. Total Environ. 2023, 857, 159511. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, F.; Tang, Z.Y.; Tang, J.T. Predictions and driving factors of production-based CO2 emissions in Beijing, China. Sustain. Cities Soc. 2020, 53, 101909. [Google Scholar] [CrossRef]
- Zhang, B.L.; Yin, S.S.; Lu, X.; Wang, S.F.; Xu, Y.F. Development of city-scale air pollutants and greenhouse gases emission inventory and mitigation strategies assessment: A case in Zhengzhou, Central China. Urban Clim. 2023, 48, 101419. [Google Scholar] [CrossRef]
- Li, L.; Mi, Y.F.; Lei, Y.L.; Wu, S.M.; Li, L.; Hua, E.S.; Yang, J.J. The spatial differences of the synergy between CO2 and air pollutant emissions in China’s 296 cities. Sci. Total Environ. 2022, 846, 157323. [Google Scholar] [CrossRef]
- Lai, Z.; Ge, D.; Xia, H.; Yue, Y.; Wang, Z. Coupling coordination between environment, economy and tourism: A case study of China. PLoS ONE 2020, 15, e0228426. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Tang, L.; Liao, K.; Ruan, L.; Liu, P. Spatial distribution and regional difference of carbon emissions efficiency of industrial energy in China. Sci. Rep. 2021, 11, 19419. [Google Scholar] [CrossRef] [PubMed]
- Oreggioni, G.D.; Mahiques, O.; Monforti-Ferrario, F.; Schaaf, E.; Muntean, M.; Guizzardi, D.; Vignati, E.; Crippa, M. The impacts of technological changes and regulatory frameworks on global air pollutant emissions from the energy industry and road transport. Energy Policy 2022, 168, 113021. [Google Scholar] [CrossRef]
- Ji, J.; Liu, H.; Yin, X. Evaluation and regional differences analysis of the marine industry development level: The Case of China. Mar. Policy 2023, 148, 105445. [Google Scholar] [CrossRef]
- Xia, D.; Zhang, L. Coupling coordination degree between coal production reduction and CO2 emission reduction in coal industry. Energy 2022, 258, 124902. [Google Scholar] [CrossRef]
- Wen, H.; Liang, W.; Lee, C.-C. China’s progress toward sustainable development in pursuit of carbon neutrality: Regional differences and dynamic evolution. Environ. Impact Assess. Rev. 2023, 98, 106959. [Google Scholar] [CrossRef]
- Tomal, M. Evaluation of coupling coordination degree and convergence behaviour of local development: A spatiotemporal analysis of all Polish municipalities over the period 2003–2019. Sustain. Cities Soc. 2021, 71, 102992. [Google Scholar] [CrossRef]
- Shen, L.; Yang, Y.; Bao, H.; Du, X.; He, H. Residents’ perceptions on the urban resources environment in Chinese large cities. Environ. Impact Assess. Rev. 2023, 100, 107080. [Google Scholar] [CrossRef]
- Ma, T.; Liu, Y.; Yang, M. Spatial-Temporal Heterogeneity for Commercial Building Carbon Emissions in China: Based the Dagum Gini Coefficient. Sustainability 2022, 14, 5243. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Feng, T.; Liu, D. What drives the temporal dynamics and spatial differences of urban and rural household emissions in China? Energy Econ. 2023, 125, 106849. [Google Scholar] [CrossRef]
Subsystem | Indexes | Unit | Attributes | Weights |
---|---|---|---|---|
CO2-emission-reduction subsystem | Total CO2 emissions | 106 ton | - | 0.3333 |
CO2 emission intensity | Ton per 102 yuan | - | 0.0228 | |
Growth rate of CO2 emissions | % | - | 0.6439 | |
PM2.5-emission-reduction subsystem | Total PM2.5 emissions | Ton | - | 0.2359 |
PM2.5 emission intensity | Ton per 108 yuan | - | 0.0315 | |
Growth rate of PM2.5 emissions | % | - | 0.7326 |
Year | Moran’s I | z-Value | p-Value |
---|---|---|---|
2003 | 0.2578 | 6.8480 | 0.005 |
2004 | 0.2927 | 8.6137 | 0.005 |
2005 | 0.2955 | 8.7381 | 0.005 |
2006 | 0.1971 | 6.8913 | 0.005 |
2007 | 0.2393 | 7.1758 | 0.005 |
2008 | 0.3198 | 9.5676 | 0.005 |
2009 | 0.2539 | 7.9959 | 0.005 |
2010 | 0.1612 | 4.6888 | 0.005 |
2011 | 0.5016 | 16.5871 | 0.005 |
2012 | 0.0776 | 2.4300 | 0.025 |
2013 | 0.4627 | 13.1608 | 0.005 |
2014 | 0.2274 | 6.9304 | 0.005 |
2015 | 0.3512 | 11.6491 | 0.005 |
2016 | 0.1380 | 4.2518 | 0.005 |
2017 | 0.3933 | 12.3570 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, S.; Cheng, L. Investigating the Synergy between CO2 and PM2.5 Emissions Reduction: A Case Study of China’s 329 Cities. Atmosphere 2023, 14, 1338. https://doi.org/10.3390/atmos14091338
Wang S, Zhang S, Cheng L. Investigating the Synergy between CO2 and PM2.5 Emissions Reduction: A Case Study of China’s 329 Cities. Atmosphere. 2023; 14(9):1338. https://doi.org/10.3390/atmos14091338
Chicago/Turabian StyleWang, Shangjiu, Shaohua Zhang, and Liang Cheng. 2023. "Investigating the Synergy between CO2 and PM2.5 Emissions Reduction: A Case Study of China’s 329 Cities" Atmosphere 14, no. 9: 1338. https://doi.org/10.3390/atmos14091338
APA StyleWang, S., Zhang, S., & Cheng, L. (2023). Investigating the Synergy between CO2 and PM2.5 Emissions Reduction: A Case Study of China’s 329 Cities. Atmosphere, 14(9), 1338. https://doi.org/10.3390/atmos14091338