Spatiotemporal Distribution Characteristics of Actual Evapotranspiration in the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Methods
3. Results and Discussion
3.1. Climate Averages
3.1.1. Spatial Distribution
3.1.2. Annual Variation
3.2. Qinghai–Tibet Plateau Evapotranspiration Based on EOF Analysis
3.2.1. Time and Space Changes
3.2.2. Frequency Analysis
3.2.3. Mann–Kendall Trend Test
4. Conclusions
- (1)
- The evapotranspiration in the southeastern part of the Qinghai–Tibet Plateau is strong and gradually decreases from southeast to northwest. The evapotranspiration had an obvious jump around 1995. Before 1995, evapotranspiration was a negative anomaly in most years, and then turned into a persistent positive anomaly, with obvious interdecadal variations.
- (2)
- There are three spatial modal distributions of evapotranspiration in the Qinghai–Tibet Plateau, which are mainly characterized by a significant and consistent change centered on the Tibet region, an east–west reverse change, and a three-pole “negative-positive-negative” east–west direction type of spatial distribution.
- (3)
- According to the research of Ji Di [32] and Han et al. [33], the temperature of the Qinghai–Tibet Plateau has increased significantly in recent decades, with a temperature increase rate of 0.44 °C/10a. During the past 30 years from 1980 to 2013, the annual precipitation existing in the fluctuation period of 5a and 11a is consistent with the abrupt period and interdecadal variation; the distribution of precipitation increases gradually from northwest to southeast, and the trend of warming and humidification is obvious.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.D.; Chen, B.D. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Ye, D.Z.; Zhang, J.Q. A preliminary simulation experiment on the influence of the Qinghai-Tibet Plateau heating on the atmospheric circulation in East Asia in summer. Sci. China Ser. A 1974, 3, 301–320. (In Chinese) [Google Scholar]
- Wu, T.Y. The Qinghai-Tibetan Plateau: How high do Tibetans live? High Alt. Med. Biol. 2001, 2, 489–499. [Google Scholar] [CrossRef]
- Sun, G.H.; Hu, Z.Y.; Ma, Y.M.; Xie, Z.P.; Yang, S.; Wang, J.M. Analysis of local land-atmosphere coupling in rainy season over a typical underlying surface in Tibetan Plateau based on field measurements and ERA5. Atmos. Res. 2020, 243, 105025. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Sci. China 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Li, H.; Pan, X.D. An Overview of Research Methods on Water Vapor Transport and Sources in the Tibetan Plateau. Adv. Earth Sci. 2022, 37, 1025–1036. [Google Scholar]
- Han, S.J.; Wang, X.; Liu, Y.P.; Tian, F.Q. North–South differentiation on the spatiotemporal variations of potential evaporation in Tibetan Plateau. Adv. Water Sci. 2023, 1–8. [Google Scholar]
- Qiu, L.S.; Zhang, L.F.; He, Y.; Chen, Y.D.; Wang, W.H. Spatiotemporal Variations of Evapotranspiration and Influence Factors in Qilian Mountain from 2000 to 2018. Res. Soil Water Conserv. 2020, 27, 210–217. [Google Scholar]
- Shang, C.P.; Wu, T.H.; Ma, N.; Wang, J.M. Assessment of Different Complementary-Relationship-Based Models for Estimating Actual Terrestrial Evapotranspiration in the Frozen Ground Regions of the Qinghai-Tibet Plateau. Remote Sens. 2022, 41, 541–557. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, K.; Li, Z.J.; Zhang, W.J.; Zhang, J. Study on Spatiotemporal Variability and Changes of Key Water Cycle Elements in the Three River Source Area of Ningxia from 2000 to 2017. J. China Hydrol. 2021, 41, 88–94. (In Chinese) [Google Scholar]
- Guo, X.T.; Meng, D.; Jiang, B.W.; Zu, L.; Gong, J.S. Spatio-temporal change and influencing factors of evapotranspiration in the Huaihe River Basin based on MODIS evapotranspiration data. Hydrogeol. Eng. Geol. 2021, 48, 45–52. (In Chinese) [Google Scholar]
- Von-Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 1999; p. 484. [Google Scholar]
- Farjami, H.; Hesari, A.R.E. Assessment of sea surface wind field pattern over the Caspian Sea using EOF analysis. Reg. Stud. Mar. Sci. 2020, 35, 101254. [Google Scholar] [CrossRef]
- Huang, S.; Yang, Y.; Wang, H.J.; Yang, Q.D. Spatio-temporal Characteristics of Sensible and Latent Heat Flux in Southwest China. J. Arid. Meteorol. 2020, 38, 601–611. (In Chinese) [Google Scholar]
- Bai, R.Q.; Zhou, Z.J.; Wu, H.; Gao, X.P. Analysis on Hydrological Variation of Fengqiao Gauge in Grand Canal Based on Mann-Kendall Test. Technol. Econ. Chang. 2021, 5 (Suppl. 1), 103–105. [Google Scholar]
- Chen, Z.R. Application of Mann-Kendall test to analysis of eutrophication trend in Xinxihe Reservoir. J. Anhui Agric. Sci. 2019, 25, 99–100+145. [Google Scholar]
- Guo, Y.C. Application of Regional Evapotranspiration Based on the Remote Sensing for Water Resource Utilization in Arid Aera. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2007. (In Chinese). [Google Scholar]
- Wang, T.; Zhao, Y.Z.; Wang, H.; Cao, Y.N.; Peng, J.; Cao, Y.N. Spatial and temporal changes of vegetation index and their response to temperature and precipitation in the Tibetan Plateau based on GIMMS NDVI. J. Glaciol. Geocryol. 2020, 42, 641–652. (In Chinese) [Google Scholar]
- Sun, J.; Qin, X.J. Precipitation and temperature regulate the seasonal changes of NDVI across the Tibetan Plateau. Environ. Earth Sci. 2016, 75, 291. [Google Scholar] [CrossRef]
- Zhou, D.W.; Fan, G.Z.; Huang, R.H.; Fang, Z.F.; Liu, Y.Q.; Li, H.Q. Interannual Variability of the Normalized Difference Vegetation Index on the Tibetan Plateau and Its Relationship with Climate Change. Adv. Atmos. Sci. Engl. Ed. 2007, 24, 474–484. [Google Scholar] [CrossRef]
- Yin, Y.H.; Wu, S.H.; Zhao, D.S.; Zheng, D.; Pan, T. Impact of Climate Change on Actual Evapotranspiration on the Tibetan Plateau during 1981–2010. Acta Geogr. Sin. 2012, 67, 1471–1481. (In Chinese) [Google Scholar]
- Wang, Q.Y.; Ma, Y.M.; Wang, B.B.; Zuo, H.C. Comparative Analysis of Surface Energy Flux and Evapotranspiration over the Northern and Southern Slopes of the Himalayas. Adv. Earth Sci. 2021, 36, 810–825. (In Chinese) [Google Scholar]
- Zhang, C.; Tang, Q.H.; Chen, D.L.; van der Ent, R.J.; Liu, X.; Li, W.; Haile, G.G. Moisture Source Changes Contributed to Different Precipitation Changes over the Northern and Southern Tibetan Plateau. J. Hydrometeorol. 2019, 20, 217–229. [Google Scholar] [CrossRef]
- Tang, Q.H.; Liu, Y.B.; Zhang, C. Research progress on moisture source change of precipitation over the Tibetan Plateau and its surrounding areas. Trans. Atmos. Sci. 2020, 43, 1002–1009. (In Chinese) [Google Scholar]
- Yao, T.C.; Lu, H.W.; Yu, Q.; Feng, W. Potential evapotranspiration characteristic and its abrupt change across the Qinghai-Tibetan Plateau and its surrounding areas in the last 50 years. Adv. Earth Sci. 2020, 35, 534–546. (In Chinese) [Google Scholar]
- North, G.; Bell, T.; Cahalan, R.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Bartels, R.J.; Black, A.W.; Keim, B.D. Trends in precipitation days in the United States. Int. J. Climatol. 2020, 40, 1038–1048. [Google Scholar] [CrossRef]
- Han, R.C.; Li, Z.L.; Li, Z.J.; Han, Y.Y. Spatial-Temporal Assessment of Historical and Future Meteorological Droughts in China. Atmosphere 2021, 12, 787. [Google Scholar] [CrossRef]
- Zhang, H.D.; Wei, W.; Xue, S. Analysis on the Variation of Temperature and Precipitation in Dingxi Based on R/S and Mann-Kendall Test. Res. Soil Water Conserv. 2015, 22, 183–189. (In Chinese) [Google Scholar]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Zhang, J.; Jin, X.M.; Zhang, X.C.; Zhu, X.Q. Spatial and temporal variations of soil moisture and its impact factors in the Golmud River Basin. Hydrogeol. Eng. Geol. 2019, 46, 66–73+91. (In Chinese) [Google Scholar]
- Ji, D. Climate Change and Its Influence on NDVI over the Qinghai-Tibet Plateau. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2012. (In Chinese). [Google Scholar]
- Han, Y.Z.; Ma, W.Q.; Wang, B.Y.; Ma, Y.M.; Tian, R.X. Change characteristics of precipitation over Qinghai-Tibet Plateau in recent 30 years. Plateau Meteorol. 2017, 36, 1477–1486. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Xiao, T.; Jia, L.; Han, L. Spatiotemporal Distribution Characteristics of Actual Evapotranspiration in the Qinghai–Tibet Plateau. Atmosphere 2023, 14, 1360. https://doi.org/10.3390/atmos14091360
Huang S, Xiao T, Jia L, Han L. Spatiotemporal Distribution Characteristics of Actual Evapotranspiration in the Qinghai–Tibet Plateau. Atmosphere. 2023; 14(9):1360. https://doi.org/10.3390/atmos14091360
Chicago/Turabian StyleHuang, Shan, Tiangui Xiao, La Jia, and Lin Han. 2023. "Spatiotemporal Distribution Characteristics of Actual Evapotranspiration in the Qinghai–Tibet Plateau" Atmosphere 14, no. 9: 1360. https://doi.org/10.3390/atmos14091360
APA StyleHuang, S., Xiao, T., Jia, L., & Han, L. (2023). Spatiotemporal Distribution Characteristics of Actual Evapotranspiration in the Qinghai–Tibet Plateau. Atmosphere, 14(9), 1360. https://doi.org/10.3390/atmos14091360