Estimation of Carbon Stocks and Carbon Sequestration Rates in Abandoned Agricultural Soils of Northwest Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Features of Soil Formation in the Territory of Northwest Russia
2.2. Soils on Massive Crystalline Rocks
2.3. Soils on Moraines
2.4. Soils on Lake-Glacial Clays
2.5. Soils on Water-Glacial Sands
2.6. Histosols
3. Results and Discussion
3.1. Evolution of Post-Agrogenic Soils
3.2. Transformation of Soil Organic Carbon in Fallow Ecosystems
3.3. Carbon Sequestration by Cropland and Fallow Land
4. Conclusions
- (1)
- Fallow soils, according to the lithological composition of parent materials, are characterized by the development of a wide range of problems associated with degradation of the soil cover (sodding, dehumification, etc.), so it is necessary to develop specific actions aimed to reclaim fallow lands for the purpose of their effective reintegration into crop rotation.
- (2)
- As a result of the different age conversion of soils to the fallow state and different lithological composition of rocks, there are significant differences in the formation of soil carbon pools. Soils formed on sandy and sandy loamy limnoglacial sediments are characterized by the accumulation of active carbon pool, and during plowing are able to lose a significant amount of carbon content, while organic matter in soils formed on clays and carbonate parent materials is in a passive carbon pool as a part of organo-mineral complexes and are less prone to degradation processes, which leads to a low degree of transformation of organo-accumulative horizons.
- (3)
- The conversion of agricultural soils to the fallow state is accompanied by a change in vegetation cover, and there is a common change of communities in the direction of zonal species.
- (4)
- During soil conversion to the fallow state, the process of carbon sequestration is activated; this is due to self-restoration and the accumulation of biomass. However, during land restoration, which is accompanied by plowing, drainage, and deforestation of the territory, there is a loss of carbon from the ecosystem. Arable soils are capable of accumulating a significant amount of carbon, this is due to the formation of stable organo-mineral complexes, and depends on agricultural techniques.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point; FAO: Rome, Italy, 2021; p. 82. [Google Scholar]
- FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020; p. 210. [Google Scholar]
- FAO. Land Use Statistics and Indicators; FAO: Rome, Italy, 2019; p. 14. [Google Scholar]
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; United Nations: New York, NY, USA, 2022; p. 52.
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar]
- Callaghan, M.; Schleussner, C.-F.; Nath, S.; Lejeune, Q.; Knutson, T.R.; Reichstein, M.; Hansen, G.; Theokritoff, E.; Andrijevic, M.; Brecha, R.J.; et al. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nat. Clim. Chang. 2021, 11, 966–972. [Google Scholar] [CrossRef]
- Federal Service for State Registration, Cadastre and Cartography. State (National) Report on the Condition and Use of Land in the Russian Federation in 2021; Federal Service for State Registration, Cadastre and Cartography Registration, Cadastre and Cartography: Moscow, Russia, 2022; p. 206.
- Ivanov, A.L.; Zavalin, A.A.; Kuznetsov, M.S. Agroecological State and Prospects for the Use of Land in Russia Withdrawn from Active Agricultural Use; Rosinformagrotech: Moscow, Russia, 2008. [Google Scholar]
- Kalinina, O.; Goryachkin, S.V.; Lyuri, D.I.; Giani, L. Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of European Russia. CATENA 2015, 129, 18–29. [Google Scholar] [CrossRef]
- Dzhabrailova, B.S. Opportunities of involvement in the turnover of unused agricultural lands in the NWFD regions. Agrar. Vestn. Ural. 2021, 11, 56–66. [Google Scholar]
- Naumov, A.; Akimova, V.; Sidorova, D.; Topnikov, M. Agriculture and land use in the North of Russia: Case study of Karelia and Yakutia. Open Geosci. 2020, 12, 1497–1511. [Google Scholar] [CrossRef]
- Orlova, N.E.; Bakina, L.G. Modern processes of humus formation in cultivated sod-podzolic soils of North-West Russia. Agrochemistry 2002, 11, 5–12. [Google Scholar]
- Isachenko, A.G.; Dashkevich, Z.V.; Karnaukhova, E.V. Physical-Geographical Zoning of the North-West of Russia; Nauka: Leningrad, Russia, 1965. [Google Scholar]
- Gagarina, E.I. Lithological Factor of Soil Formation (by the Example of the North-West Russian Plain); Saint-Petersburg State University: Saint-Petersburg, Russia, 2004. [Google Scholar]
- Ponomareva, V.V. The Theory of Podzol-Forming Process Moscow; Nauka: Leningrad, Russia, 1964. [Google Scholar]
- Gagarina, E.I.; Matinyan, N.N.; Schastnaya, L.S.; Kasatkina, G.A. Soils and Soil Cover in Northwest Russia; Saint-Petersburg State University: Saint-Petersburg, Russia, 1995. [Google Scholar]
- Kuznetsova, A.I.; Lukina, N.V.; Gornov, A.V.; Gornova, M.V.; Tikhonova, E.V.; Smirnov, V.E.; Danilova, M.A.; Tebenkova, D.N.; Braslavskaya, T.Y.; Kuznetsov, V.A.; et al. Carbon Stock in Sandy Soils of Pine Forests in the West of Russia. Eurasian Soil Sci. 2020, 53, 1056–1065. [Google Scholar] [CrossRef]
- Targulyan, V.O. Soil Formation and Weathering in Cold Humid Regions; Nauka: Moscow, Russia, 1971. [Google Scholar]
- Konyushkov, D.E.; Gerasimova, M.I.; Ananko, T.V. Correlation of Soddy Calcareous Soils on the Soil Map of the Russian Federation (1:2.5 M Scale, 1988) and in the Russian Soil Classification System. Eurasian Soil Sci. 2019, 52, 244–257. [Google Scholar] [CrossRef]
- Zonn, S.V. Modern concepts of podzol formation and pseudopodzalivanie and their manifestations in soils. Eurasian Soil Sci. 1978, 1, 1–12. [Google Scholar]
- Kalinina, O.; Goryachkin, S.V.; Karavaeva, N.A.; Lyuri, D.I.; Najdenko, L.; Giani, L. Self-restoration of post-agrogenic sandy soils in the southern Taiga of Russia: Soil development, nutrient status, and carbon dynamics. Geoderma 2009, 152, 35–42. [Google Scholar] [CrossRef]
- Savelyev, K.N.; Abakumov, E. Diversity and Genetic Features of Rendzin of Samarskaya Luka. Bull. Samar. Luka 2007, 16, 708–718. [Google Scholar]
- Ponomareva, V.V.; Myasnikova, A.M. On the characteristic of the process of humus formation in sod-carbonate soils. Eurasian Soil Sci. 1951, 12, 721–735. [Google Scholar]
- Matinyan, N.N.; Dergacheva, M.I. Humus profile of semihydromorphic soils on banded clays. Bull. Leningr. Univ. 1988, 3, 110–121. [Google Scholar]
- Sukhacheva, E.U.; Aparin, B.F. Soil Cover Patterns in Anthropogenically Transformed Landscapes of Leningrad Oblast. Eurasian Soil Sci. 2019, 52, 1146–1158. [Google Scholar] [CrossRef]
- Aparin, B.F.; Babikov, B.V.; Kasatkina, G.A.; Sukhacheva, E.Y. Forestry of Lisino as the unique testing area for the soil and ecologic monitoring. Dokuchaev Soil Bull. 2016, 83, 140–158. [Google Scholar] [CrossRef]
- Khantulev, A.A.; Gagarina, E.I.; Matinyan, N.N.; Schastnaya, L.S. On Soil Formation in the Autonomous Conditions of the North-West of the RSFSR. Bull. Leningr. Univ. 1976, 3, 127–137. [Google Scholar]
- Abakumov, E.; Polyakov, V.; Orlova, K. Podzol development on different aged coastal bars of Lake Ladoga. Tomsk State Univ. J. Biology. 2019, 48, 6–31. [Google Scholar] [CrossRef]
- Polyakov, V.; Abakumov, E.; Nizamutdinov, T.; Shevchenko, E.; Makarova, M. Estimation of Carbon Stocks and Stabilization Rates of Organic Matter in Soils of the «Ladoga» Carbon Monitoring Site. Agronomy 2023, 13, 807. [Google Scholar] [CrossRef]
- Kalinina, O.; Cherkinsky, A.; Chertov, O.; Goryachkin, S.; Kurganova, I.; Lopes de Gerenyu, V.; Lyuri, D.; Kuzyakov, Y.; Giani, L. Post-agricultural restoration: Implications for dynamics of soil organic matter pools. Catena 2019, 181, 104096. [Google Scholar] [CrossRef]
- Telesnina, V.M.; Zhukov, M.A. The Influence of Agricultural Land Use on the Dynamics of Biological Cycling and Soil Properties in the Course of Postagrogenic Succession (Kostroma Oblast). Eurasian Soil Sci. 2019, 52, 1122–1136. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Yermolaev, A.M.; Lopes de Gerenyu, V.O.; Larionova, A.A.; Kuzyakov, Y.; Keller, T.; Lange, S. Carbon balance in the soils of abandoned lands in Moscow region. Eurasian Soil Sci. 2007, 40, 51–58. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Mostovaya, A.S.; Ovsepyan, L.A.; Telesnina, V.M.; Lichko, V.I.; Baeva, Y.I. Effect of Reforestation on Microbiological Activity of Postagrogenic Soils in European Russia. Contemp. Probl. Ecol. 2018, 11, 704–718. [Google Scholar] [CrossRef]
- Mostovaya, A.S.; Kurganova, I.N.; Lopez de Guerinho, V.O.; Khokhlova, O.S.; Rusakov, A.V.; Shapovalov, A.S. Changes in microbiological activity of gray forest soils during natural reforestation. Bull. Voronezh State Univ. 2015, 2, 64–72. [Google Scholar]
- Erokhova, A.A.; Makarov, M.I.; Morgun, E.G.; Ryzhova, I.M. Effect of the natural reforestation of an arable land on the organic matter composition in soddy-podzolic soils. Eurasian Soil Sci. 2014, 47, 1100–1106. [Google Scholar] [CrossRef]
- Kalinina, O.; Chertov, O.; Dolgikh, A.V.; Goryachkin, S.V.; Lyuri, D.I.; Vormstein, S.; Giani, L. Self-restoration of post-agrogenic Albeluvisols: Soil development, carbon stocks and dynamics of carbon pools. Geoderma 2013, 207–208, 221–233. [Google Scholar] [CrossRef]
- Susyan, E.A.; Wirth, S.; Ananyeva, N.D.; Stolnikova, E.V. Forest succession on abandoned arable soils in European Russia—Impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity. Eur. J. Soil Biol. 2011, 47, 169–174. [Google Scholar] [CrossRef]
- Lyuri, D.I.; Goryachkin, S.V.; Karavaeva, N.A.; Denisenko, E.A.; Nefedova, T.G. Dynamics of Agricultural Lands of Russia in XX Century and Postagrogenic Restoration of Vegetation and Soils; GEOS: Moscow, Russia, 2010. [Google Scholar]
- Laganière, J.; Angers, D.A.; Paré, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Chang. Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Petaja, G.; Bārdule, A.; Zalmanis, J.; Lazdiņa, D.; Daugaviete, M.; Skranda, I.; Zvaigzne, Z.A.; Purviņa, D. Changes in Organic Carbon Stock in Soil and Whole Tree Biomass in Afforested Areas in Latvia. Plants 2023, 12, 2264. [Google Scholar] [CrossRef]
- Morris, S.J.; Bohm, S.; Haile-Mariam, S.; Paul, E.A. Evaluation of carbon accrual in afforested agricultural soils. Glob. Chang. Biol. 2007, 13, 1145–1156. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef]
- Shevtsova, L.; Romanenkov, V.; Sirotenko, O.; Smith, P.; Smith, J.U.; Leech, P.; Kanzyvaa, S.; Rodionova, V. Effect of natural and agricultural factors on long-term soil organic matter dynamics in arable soddy-podzolic soils—Modeling and observation. Geoderma 2003, 116, 165–189. [Google Scholar] [CrossRef]
- Henebry, G.M. Carbon in idle croplands. Nature 2009, 457, 1089–1090. [Google Scholar] [CrossRef] [PubMed]
- Schierhorn, F.; Müller, D.; Beringer, T.; Prishchepov, A.V.; Kuemmerle, T.; Balmann, A. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob. Biogeochem. Cycles 2013, 27, 1175–1185. [Google Scholar] [CrossRef]
- Semenov, V.M.; Ivannikov, L.A.; Tulina, A.S. Stabilization of organic matter in the soil. Agrochimia 2009, 10, 77–96. [Google Scholar]
- Yang, H.; Cao, J.; Zhang, L.; Hou, Y.; Mao, L. Pool Sizes and Turnover of Soil Organic Carbon of Farmland Soil in Karst Area of Guilin. J. Northeast Agric. Univ. 2011, 18, 39–45. [Google Scholar] [CrossRef]
- Polyakov, V.; Abakumov, E.; Lodygin, E.; Vasilevich, R. Molecular Weight Distribution of Humic Acids Isolated from Buried Soils and Yedoma Sediments. Agronomy 2023, 13, 1483. [Google Scholar] [CrossRef]
- Christensen, B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 2001, 52, 345–353. [Google Scholar] [CrossRef]
- Semenov, V.M.; Tulina, A.S.; Semenova, N.A.; Ivannikova, L.A. Humification and nonhumification pathways of the organic matter stabilization in soil: A review. Eurasian Soil Sci. 2013, 46, 355–368. [Google Scholar] [CrossRef]
- Larionova, A.A.; Zolotareva, B.N.; Yevdokimov, I.V.; Sapronov, D.V.; Kuzyakov, Y.V.; Buegger, F. The rates of organic matter renewal in gray forest soils and chernozems. Eurasian Soil Sci. 2008, 41, 1378–1386. [Google Scholar] [CrossRef]
- Vuichard, N.; Ciais, P.; Wolf, A. Soil Carbon Sequestration or Biofuel Production: New Land-Use Opportunities for Mitigating Climate over Abandoned Soviet Farmlands. Environ. Sci. Technol. 2009, 43, 8678–8683. [Google Scholar] [CrossRef]
- Ivanov, I.V.; Pesochina, L.S.; Semenov, V.M. Biological mineralization of organic matter in the modern virgin and plowed chernozems, buried chernozems, and fossil chernozems. Eurasian Soil Sci. 2009, 42, 1109–1119. [Google Scholar] [CrossRef]
- Semenov, V.M.; Kogut, B.M.; Zinyakova, N.B.; Masyutenko, N.P.; Malyukova, L.S.; Lebedeva, T.N.; Tulina, A.S. Biologically Active Organic Matter in Soils of European Russia. Eurasian Soil Sci. 2018, 51, 434–447. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Smith, K.R.; Waring, B.G. Broad-Scale Patterns of Soil Carbon (C) Pools and Fluxes Across Semiarid Ecosystems are Linked to Climate and Soil Texture. Ecosystems 2019, 22, 742–753. [Google Scholar] [CrossRef]
- Mullen, R.W.; Thomason, W.E.; Raun, W.R. Estimated increase in atmospheric carbon dioxide due to worldwide decrease in soil organic matter. Commun. Soil Sci. Plant Anal. 1999, 30, 1713–1719. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Zhuang, Q.; Jin, X.; Bian, Z.; Zhou, M.; Meng, Z.; Han, C.; Guo, X.; Jin, W.; et al. A Review on Carbon Source and Sink in Arable Land Ecosystems. Land 2022, 11, 580. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Audsley, E.; Mortimer, D. The Impact of the Common Agricultural Policy on Land Use in Europe, in Land Cover and Land Use; EOLSS Publishers: Oxford, UK, 2002; p. 10. [Google Scholar]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- FAO. Global Carbon Pools and Fluxes and the Impact of Agricultural Intensification and Judicious Land Use; FAO: Rome, Italy, 1999; pp. 45–52. [Google Scholar]
- Smith, W.N.; Desjardins, R.L.; Pattey, E. The net flux of carbon from agricultural soils in Canada 1970–2010. Glob. Chang. Biol. 2000, 6, 557–568. [Google Scholar] [CrossRef]
- Karelin, D.V.; Goryachkin, S.V.; Kudikov, A.V.; Lopes de Gerenu, V.O.; Lunin, V.N.; Dolgikh, A.V.; Lyuri, D.I. Changes in carbon pool and CO2 emission in the course of postagrogenic succession on gray soils (Luvic Phaeozems) in European Russia. Eurasian Soil Sci. 2017, 50, 559–572. [Google Scholar] [CrossRef]
- Watson, R.; Noble, I.; Bolin, B.; Ravindranath, N.; Verardo, D.; Dokken, D. Land Use, Land-Use Change, and Forestry. A Spec. Report. Intergov. Panel Clim. Chang. 2000. [Google Scholar]
- Lal, R.; Negassa, W.; Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
Soil Name | Horizon | pH | Content of Humus, % | Stocks of Humus, kg × m−2 |
---|---|---|---|---|
Entic Podzol | Oe | 4.4 | 87.37 | 63.3 |
Ah | 4.6 | 10.90 | ||
Bs1 | 4.6 | 8.30 | ||
Bs2 | 5.5 | 2.41 | ||
B/C | 5.7 | 1.98 | ||
Entic Podzol | Oe | 4.3 | 71.89 | 42.58 |
E | 4.4 | 1.54 | ||
B | 5.4 | 1.54 |
Soil Name | Horizon | pH | Content of Humus, % | Stocks of Humus, kg × m−2 |
---|---|---|---|---|
Stagnic Retisol on moraine with Cambrian clay sediments | Oe | 5.81 | 60 | 35.9 |
Ah | 5.55 | 5.58 | ||
E | 6.45 | 3.95 | ||
B/C | 6.50 | 1.7 | ||
Cg | 7.25 | 0.5 | ||
Retisol on moraine with Devonian sandy–silty sediments | Oe | 4.40 | 58.34 | 31.4 |
Ah | 4.03 | 5.30 | ||
E | 5.10 | 1.4 | ||
Bt | 5.50 | 0.35 | ||
Entic Retisol on moraine with Devonian sandy–silty sediments | Ah | 7.88 | 3.05 | 12.3 |
B/C | 7.98 | 1.09 | ||
C | 7.70 | 0.36 | ||
Rendzin | Ah | 3.60 | 4.48 | 16.3 |
E | 4.30 | 2.6 | ||
Bt | 4.40 | 2 | ||
B/C | 4.00 | 0.45 |
Soil Name | Horizon | pH | Content of Humus, % | Stocks of Humus, kg × m−2 |
---|---|---|---|---|
Typical Retisol | Ah | 4.7 | 6.29 | 26.1 |
E | 4.3 | 1.71 | ||
Bt | 5.1 | 0.86 | ||
B/C | 7.1 | 0.53 | ||
C | 7.7 | 0.51 | ||
Stagnic Retisol | Ah | 4.4 | 7.69 | 33.1 |
Bts | 4.2 | 1.55 | ||
B/Cs | 5.8 | 0.46 | ||
Cs | 7.1 | 0.31 | ||
Typical Retisol | AY | 4.1 | 6.20 | 18.5 |
E | 4.3 | 3.01 | ||
B | 4.2 | 0.48 | ||
B/C | 6.1 | 0.22 | ||
C | 6.6 | 0.22 |
Soil Name | Horizon | pH | Content of Humus, % | Stocks of Humus, kg × m−2 |
---|---|---|---|---|
Histic Podzol | Hi | 4.4 | 89.7 | 54.7 |
He | 3.8 | 78.6 | ||
Ha | 3.9 | 14.63 | ||
E | 4.3 | 0.67 | ||
E/B | 4.4 | 0.67 | ||
Bs | 4.5 | 1.55 | ||
B/C | 5.5 | 0.43 | ||
Folic Podzol | Oe | 4.9 | 65.5 | 34.6 |
Oa | 4.6 | 4.17 | ||
E | 4.8 | 0.53 | ||
Bs | 5.8 | 3.4 | ||
B/C | 5.2 | 0.23 | ||
Folic Stagnic Podzol | Oe | 6.01 | 223.1 | 68.1 |
E | 4.44 | 3.2 | ||
Bs1 | 5.35 | 1.6 | ||
Bs2 | 5.66 | 1.1 | ||
G | 5.99 | 0.9 |
Soil Name | Horizon | pH | Content of Humus, % | Stocks of Humus, kg × m−2 |
---|---|---|---|---|
Fibric Histosol | Hi1 | 5.16 | 66.05 | 108.8 |
Hi2 | 5.28 | 72.17 | ||
Hi3 | 4.7 | 79.72 | ||
He1 | 4.05 | 75.33 | ||
He2 | 3.66 | 69.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakov, V.; Abakumov, E. Estimation of Carbon Stocks and Carbon Sequestration Rates in Abandoned Agricultural Soils of Northwest Russia. Atmosphere 2023, 14, 1370. https://doi.org/10.3390/atmos14091370
Polyakov V, Abakumov E. Estimation of Carbon Stocks and Carbon Sequestration Rates in Abandoned Agricultural Soils of Northwest Russia. Atmosphere. 2023; 14(9):1370. https://doi.org/10.3390/atmos14091370
Chicago/Turabian StylePolyakov, Vyacheslav, and Evgeny Abakumov. 2023. "Estimation of Carbon Stocks and Carbon Sequestration Rates in Abandoned Agricultural Soils of Northwest Russia" Atmosphere 14, no. 9: 1370. https://doi.org/10.3390/atmos14091370
APA StylePolyakov, V., & Abakumov, E. (2023). Estimation of Carbon Stocks and Carbon Sequestration Rates in Abandoned Agricultural Soils of Northwest Russia. Atmosphere, 14(9), 1370. https://doi.org/10.3390/atmos14091370