Patterns and Influencing Factors of Air Pollution at a Southeast Chinese City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Venues and Strategy
2.2. Equipment and Quality Control
2.3. Statistical Analysis
3. Results
3.1. The Concentrations of Air Pollutants, Meteorological Parameters, and Traffic Flow
3.2. Temporal Variations of the Concentrations of Fine PM Pollutants, Traffic Flow, and Meteorological Parameters
3.3. Temporal Variation in Mean Ratios of PM1.0 and PM2.5
3.4. Factor Analysis of the Potential Sources of Air Pollution and Influential Weather Factors
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Ecology and Environment of the People’s Republic of China. Circular of the Ministry of Ecology and Environment about Air Quality; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2019. [Google Scholar]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Shan, Y.; Wang, X.; Wang, Z.; Liang, L.; Li, J.; Sun, J. The pattern and mechanism of air pollution in developed coastal areas of China: From the perspective of urban agglomeration. PLoS ONE 2020, 15, e0237863. [Google Scholar] [CrossRef]
- Owoade, O.K.; Fawole, O.G.; Olise, F.S.; Ogundele, L.T.; Olaniyi, H.B.; Almeida, M.S.; Ho, M.D.; Hopke, P.K. Characterization and source identification of airborne particulate loadings at receptor site-classes of Lagos Mega-City, Nigeria. J. Air Waste Manag. Assoc. 2013, 63, 1026–1035. [Google Scholar] [CrossRef]
- Li, X.; Song, H.; Zhai, S.; Lu, S.; Kong, Y.; Xia, H.; Zhao, H. Particulate matter pollution in Chinese cities: Areal-temporal variations and their relationships with meteorological conditions (2015–2017). Environ. Pollut. 2019, 246, 11–18. [Google Scholar] [CrossRef]
- Guan, Q.; Cai, A.; Wang, F.; Yang, L.; Xu, C.; Liu, Z. Spatio-temporal variability of particulate matter in the key part of Gansu Province, Western China. Environ. Pollut. 2017, 230, 189–198. [Google Scholar] [CrossRef]
- Chen, T.; He, J.; Lu, X.; She, J.; Guan, Z. Spatial and Temporal Variations of PM2.5 and Its Relation to Meteorological Factors in the Urban Area of Nanjing, China. Int. J. Environ. Res. Public Health 2016, 13, 921. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Xu, Z.; Cao, Y. Characteristics and sources of atmospheric pollutants in typical inland cities in arid regions of central Asia: A case study of Urumqi city. PLoS ONE 2021, 16, e0249563. [Google Scholar] [CrossRef]
- GB 3095-2012; Ambient Air Quality Standards. Ministry of Ecology and Environment the People’s Republic of China: Beijing China, 2012.
- ISO/TR 27628:2007; Workplace Atmospheres—Ultrafine, Nanoparticle and Nano-Structured Aerosols—Inhalation Exposure Characterization and Assessment. ISO: Geneva, Switzerland, 2007; p. 34.
- ISO 80004-1:2023; Nanotechnologies–Vocabulary—Part 1: Core Vocabulary. ISO: Geneva, Switzerland, 2023; p. 12.
- Ali, M.U.; Lin, S.; Yousaf, B.; Abbas, Q.; Munir, M.A.M.; Rashid, A.; Zheng, C.; Kuang, X.; Wong, M.H. Pollution characteristics, mechanism of toxicity and health effects of the ultrafine particles in the indoor environment: Current status and future perspectives. Crit. Rev. Environ. Sci. Technol. 2022, 52, 436–473. [Google Scholar] [CrossRef]
- Kan, H.; Chen, R.; Tong, S. Ambient air pollution, climate change, and population health in China. Environ. Int. 2012, 42, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, X.; Barreiro, E.; Bustamante, V.; Lopez-Campos, J.L.; González-Barcala, F.J.; Cruz, M.J. Diesel exhausts particles: Their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. Sci. Total Environ. 2019, 652, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Beelen, R.; Hoek, G.; van den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ. Health Perspect. 2008, 116, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Hangzhou Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021.
- Patton, A.P.; Perkins, J.; Zamore, W.; Levy, J.I.; Brugge, D.; Durant, J.L. Spatial and temporal differences in traffic-related air pollution in three urban neighborhoods near an interstate highway. Atmos. Environ. 2014, 99, 309–321. [Google Scholar] [CrossRef] [PubMed]
- He, H.D.; Gao, H.O. Particulate matter exposure at a densely populated urban traffic intersection and crosswalk. Environ. Pollut. 2021, 268, 115931. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Barnes, J.; Hayes, E. Traffic-related air pollution reduction at UK schools during the COVID-19 lockdown. Sci. Total Environ. 2021, 780, 146651. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Barratt, B.; Holliday, L.; Griffiths, C.J.; Mudway, I.S. Characterising professional drivers’ exposure to traffic-related air pollution: Evidence for reduction strategies from in-vehicle personal exposure monitoring. Environ. Int. 2021, 153, 106532. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.S.; Ryu, M.H.; Carlsten, C. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 2020, 52, 318–328. [Google Scholar] [CrossRef]
- Javed, Z.; Bilal, M.; Qium, Z.; Li, G.; Sandhu, O.; Mehmood, K.; Wang, Y.; Ali, A.; Liu, C.; Wang, Y.; et al. Spatiotemporal characterization of aerosols and trace gases over the Yangtze River Delta region, China: Impact of trans-boundary pollution and meteorology. Environ. Sci. Eur. 2022, 34, 86. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhou, Z.; Russo, A.; Du, H.; Xiang, J.; Zhang, J.; Zhou, C. Impact of meteorological conditions at multiple scales on ozone concentration in the Yangtze River Delta. Environ. Sci. Pollut. Res. Int. 2021, 28, 62991–63007. [Google Scholar] [CrossRef]
- Coakes, S.J.O.; Ong, C. SPSS: Analysis without Anguish: Version 18.0 for Windows; John Wiley & Sons: Hoboken, NJ, USA, 2007; p. 278. [Google Scholar]
- Watkins, M.W. Exploratory Factor Analysis: A Guide to Best Practice. J. Black Psychol. 2018, 44, 219–246. [Google Scholar] [CrossRef]
- Phuc, N.H.; Oanh, N.T.K. Large spatio-temporal variations of size-resolved particulate matter and volatile organic compounds in urban area with heavy traffic. Environ. Sci. Pollut. Res. Int. 2022, 29, 21491–21507. [Google Scholar] [CrossRef]
- Zhu, Y.; Sulaymon, I.D.; Xie, X.; Mao, J.; Guo, S.; Hu, M.; Hu, J. Airborne particle number concentrations in China: A critical review. Environ. Pollut. 2022, 307, 119470. [Google Scholar] [CrossRef]
- Sahanavin, N.; Prueksasit, T.; Tantrakarnapa, K. Relationship between PM (10) and PM(2.5) levels in high-traffic area determined using path analysis and linear regression. J. Environ. Sci. 2018, 69, 105–114. [Google Scholar] [CrossRef]
- Chen, Y.C.; Hsu, C.K.; Wang, C.C.; Tsai, P.J.; Wang, C.Y.; Chen, M.R.; Lin, M.Y. Particulate Matter Exposure in a Police Station Located near a Highway. Int. J. Environ. Res. Public Health 2015, 12, 14541–14556. [Google Scholar] [CrossRef]
- Wei, T.; Wijesiri, B.; Li, Y.; Goonetilleke, A. Particulate matter exchange between atmosphere and roads surfaces in urban areas. J. Environ. Sci. 2020, 98, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Forehead, H.; Huynh, N. Review of modelling air pollution from traffic at street-level-The state of the science. Environ. Pollut. 2018, 241, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Long, E.; Carlsten, C. Controlled human exposure to diesel exhaust: Results illuminate health effects of traffic-related air pollution and inform future directions. Part. Fibre Toxicol. 2022, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Lou, D.; Hu, Z.; Tan, P.; Yao, D.; Hu, W.; Li, P.; Ren, J.; Chen, C. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement. J. Environ. Sci. 2012, 24, 1972–1978. [Google Scholar] [CrossRef]
- Holmen, B.A.; Ayala, A. Ultrafine PM emissions from natural gas, oxidation-catalyst diesel, and particle-trap diesel heavy-duty transit buses. Environ. Sci. Technol. 2002, 36, 5041–5050. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Tu, R.; Wang, A.; Zhai, Z.; Hatzopoulou, M. Generation of spikes in ultrafine particle emissions from a gasoline direct injection vehicle during on-road emission tests. Environ. Pollut. 2020, 267, 115695. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Cheng, S.; Lang, J.; Li, S.; Tian, L. On-board measurements of gaseous pollutant emission characteristics under real driving conditions from light-duty diesel vehicles in Chinese cities. J. Environ. Sci. 2016, 46, 28–37. [Google Scholar] [CrossRef]
- Rönkkö, T.; Timonen, H. Overview of Sources and Characteristics of Nanoparticles in Urban Traffic-Influenced Areas. J. Alzheimers Dis. 2019, 72, 15–28. [Google Scholar] [CrossRef]
- Charron, A.; Harrison, R.M. Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos. Environ. 2003, 37, 4109–4119. [Google Scholar] [CrossRef]
- Rupakheti, D.; Yin, X.; Rupakheti, M.; Zhang, Q.; Li, P.; Rai, M.; Kang, S. Spatio-temporal characteristics of air pollutants over Xinjiang, northwestern China. Environ. Pollut. 2021, 268, 115907. [Google Scholar] [CrossRef]
- Yavuz, V.; Özen, C.; Çapraz, Ö.; Özdemir, E.T.; Deniz, A.; Akbayır, İ.; Temur, H. Analysing of atmospheric conditions and their effects on air quality in Istanbul using SODAR and CEILOMETER. Environ. Sci. Pollut. Res. Int. 2022, 29, 16213–16232. [Google Scholar] [CrossRef] [PubMed]
- Galindo, N.; Varea, M.; Gil-Moltó, J.; Yubero, E.; Nicolás, J. The Influence of Meteorology on Particulate Matter Concentrations at an Urban Mediterranean Location. Water Air Soil Pollut. 2011, 215, 365–372. [Google Scholar] [CrossRef]
- Kong, L.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Liu, X.; Cheng, N.; Deng, Y.; Zhai, R.; Wang, Z. Investigating the characteristics and source analyses of PM (2.5) seasonal variations in Chengdu, Southwest China. Chemosphere 2020, 243, 125267. [Google Scholar] [CrossRef]
- Romero, Y.; Diaz, C.; Meldrum, I.; Arias Velasquez, R.; Noel, J. Temporal and spatial analysis of traffic-Related pollutant under the influence of the seasonality and meteorological variables over an urban city in Peru. Heliyon 2020, 6, e04029. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, R. Effects of atmospheric circulations on the interannual variation in PM2.5 concentrations over the Beijing-Tianjin-Hebei region in 2013–2018. Atmos. Chem. Phys. 2020, 20, 7667–7682. [Google Scholar] [CrossRef]
Locations | Venue 1 | Venue 2 | The Ratios for Venue 2 to Venue 1 | p | |
---|---|---|---|---|---|
Factors [Median (min, max)] | |||||
UFP (104 pt/cm3) | 4.29 (1.95, 9.53) | 5.45 (1.05, 18.2) | 1.27 | ˂0.01 | |
PM1.0 (102 ug/cm3) | 1.44 (0.534, 4.87) | 2.25 (0.284, 5.93) | 1.56 | ˂0.01 | |
PM2.5 (102 ug/cm3) | 1.46 (0.544, 4.95) | 2.28 (0.286, 6.07) | 1.56 | ˂0.01 | |
PM10 (102 ug/cm3) | 1.58 (0.600, 5.32) | 2.57 (0.324, 6.52) | 1.63 | ˂0.01 | |
O3 (ppm) | 0.004 (0.00, 0.02) | 0.04 (0.00, 0.11) | 10.0 | ˂0.01 | |
NO (ppm) | 0.13 (0.00, 0.88) | 0.38 (0.00, 1.25) | 2.92 | ˂0.01 | |
SO2 (ppm) | 0.02 (0.00, 0.18) | 0.01 (0.00, 0.07) | 0.50 | ˂0.01 | |
CO (ppm) | 1.40 (0.20, 14.00) | 0.40 (0.00, 2.00) | 0.29 | ˂0.01 | |
Temperature (℃) | 24.2 (14.7, 29.4) | 23.7 (18.9, 32.0) | 0.98 | 0.69 | |
Pressure (kPa) | 1.02 (1.01, 1.02) | 1.01 (1.01, 1.01) | 0.99 | ˂0.01 | |
Humidity (%) | 70.0 (37.1, 98.5) | 64.2 (30.0, 91.0) | 0.92 | 0.02 | |
Wind speed (m/s) | 0.45 (0.16, 1.74) | 0.40 (0.03, 1.57) | 0.89 | ˂0.01 | |
Traffic (vehicle numbers per hour) | 115 (55, 488) | 24 (14, 90) | 0.21 | ˂0.01 |
Categories | Variables | Overall | Venue 1 | Venue 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 1 | Factor 2 | Factor 3 | Factor 1 | Factor 2 | Factor 3 | |||
Air pollutants | PM1.0 (ug/cm3) | 0.98 | 0.93 | 0.99 | ||||||
PM2.5 (ug/cm3) | 0.98 | 0.93 | 0.99 | |||||||
PM10 (ug/cm3) | 0.98 | 0.93 | 0.99 | |||||||
UFP (pt/cm3) | 0.52 | 0.73 | 0.55 | |||||||
CO (ppm) | 0.80 | 0.89 | 0.75 | |||||||
SO2 (ppm) | 0.74 | 0.89 | 0.74 | |||||||
NO (ppm) | −0.65 | 0.65 | −0.74 | |||||||
O3 (ppm) | −0.81 | 0.79 | −0.82 | |||||||
Traffic | 0.74 | 0.58 | 0.93 | |||||||
Variance explained (%) | 40.85 | 30.46 | 34.96 | 26.40 | 12.43 | 50.93 | 16.14 | 12.00 | ||
Cumulative variance explained (%) | 71.31 | 76.30 | 79.07 | |||||||
KMO | 0.718 | 0.61 | 0.70 | |||||||
Bartlett’s Test | p < 0.001 | p < 0.001 | p < 0.001 | |||||||
Air pollutants and meteorological parameters | Variables | Overall | Venue 1 | Venue 2 | ||||||
Factor 1 | Factor 2 | Factor 3 | Factor 1 | Factor 2 | Factor 3 | Factor 1 | Factor 2 | Factor 3 | ||
PM1.0 (ug/cm3) | 0.98 | 0.99 | 0.97 | |||||||
PM2.5 (ug/cm3) | 0.98 | 0.98 | 0.97 | |||||||
PM10 (ug/cm3) | 0.98 | 0.98 | 0.97 | |||||||
UFP (pt/cm3) | 0.78 | 0.73 | 0.78 | |||||||
CO (ppm) | 0.65 | 0.87 | 0.79 | |||||||
SO2 (ppm) | 0.58 | 0.82 | −0.60 | |||||||
NO (ppm) | −0.83 | 0.60 | −0.81 | |||||||
O3 (ppm) | −0.82 | 0.64 | −0.83 | |||||||
Traffic | 0.61 | 0.44 | 0.52 | |||||||
Humidity | 0.86 | −0.83 | 0.90 | |||||||
Wind speed | −0.75 | −0.42 | −0.67 | |||||||
Pressure | −0.67 | 0.56 | −0.83 | |||||||
Temp | −0.89 | −0.92 | −0.68 | |||||||
Variance explained (%) | 39.14 | 25.63 | 12.01 | 29.19 | 21.67 | 16.00 | 45.55 | 20.25 | 9.08 | |
Cumulative variance explained (%) | 76.78 | 66.86 | 74.88 | |||||||
KMO | 0.759 | 0.681 | 0.727 | |||||||
Bartlett’s Test | p < 0.001 | p < 0.001 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, L.; Gao, X.; Zhao, Y.; Zhang, M.; Chen, Q.; Zou, H.; Xing, M. Patterns and Influencing Factors of Air Pollution at a Southeast Chinese City. Atmosphere 2023, 14, 1394. https://doi.org/10.3390/atmos14091394
Jian L, Gao X, Zhao Y, Zhang M, Chen Q, Zou H, Xing M. Patterns and Influencing Factors of Air Pollution at a Southeast Chinese City. Atmosphere. 2023; 14(9):1394. https://doi.org/10.3390/atmos14091394
Chicago/Turabian StyleJian, Le, Xiangjing Gao, Yun Zhao, Meibian Zhang, Qing Chen, Hua Zou, and Mingluan Xing. 2023. "Patterns and Influencing Factors of Air Pollution at a Southeast Chinese City" Atmosphere 14, no. 9: 1394. https://doi.org/10.3390/atmos14091394
APA StyleJian, L., Gao, X., Zhao, Y., Zhang, M., Chen, Q., Zou, H., & Xing, M. (2023). Patterns and Influencing Factors of Air Pollution at a Southeast Chinese City. Atmosphere, 14(9), 1394. https://doi.org/10.3390/atmos14091394