Climate Change in the Eastern Xinjiang of China and Its Connection to Northwestern Warm Humidification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological Data
2.3. Statistical Methods
3. Results and Discussion
3.1. Spatial Characteristics of Climate Change in Eastern Xinjiang
3.2. Characteristics of Precipitation
3.3. Driving Mechanism of Precipitation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, B.-T.; Qian, J. Changes of weather and climate extremes in the IPCC AR6. Adv. Clim. Chang. Res. 2021, 17, 713–718. [Google Scholar]
- Zhou, T.-J.; Chen, Z.-M.; Chen, X.-L.; Zuo, M.; Jiang, J.; Hu, S. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information. Adv. Clim. Chang. Res. 2021, 17, 652–663. [Google Scholar]
- Wang, Z.-N.; Yuan, J.-S.; Pang, B.; Huang, L. The interpretation and highlights on mitigation of climate change in IPCC AR6 WGIII report. Adv. Clim. Chang. Res. 2022, 18, 531–537. [Google Scholar] [CrossRef]
- Yao, J.-Q.; Mao, W.-Y.; Chen, J.; Tuoliewubieke, D. Recent signal and impact of wet-to-dry climatic shift in Xinjiang, China. J. Geogr. Sci. 2021, 31, 1283–1298. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, J.; Wang, P.; Yu, H.; Yue, P.; Liu, X.; Lin, J.; Duan, X.; Zhu, B.; Yan, X. Progress and prospect on climate warming and humidification in Northwest China. Chin. Sci. Bull. 2023, 68, 1814–1828. (In Chinese) [Google Scholar] [CrossRef]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and future climate change in northwest China. Clim. Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef]
- Wang, Y.J.; Qin, D.H. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Adv. Clim. Chang. Res. 2017, 8, 268–278. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Q.; Ren, X.; Wang, X.; Yan, X.; Li, X.; Wang, L.; Bao, L. Climatic Change Characteristics towards the “Warming–Wetting” Trend in the Pan-Central-Asia Arid Region. Atmosphere 2022, 13, 467. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, Q.; Yang, J.-H.; Li, C.-H. Response of potential evapotranspiration to warming and wetting in Northwest China. Atmosphere 2022, 13, 353. [Google Scholar] [CrossRef]
- Li, H.; Gao, Y.; Hou, E. Spatial and temporal variation of precipitation during 1960–2015 in Northwestern China. Nat. Hazards 2021, 109, 2173–2196. [Google Scholar] [CrossRef]
- He, B.; Sheng, Y.; Cao, W.; Wu, J. Characteristics of climate change in northern Xinjiang in 1961–2017, China. Chin. Geogr. Sci. 2020, 30, 249–265. [Google Scholar] [CrossRef]
- Wen, X.; Wu, X.; Gao, M. Spatiotemporal variability of temperature and precipitation in Gansu Province (Northwest China) during 1951–2015. Atmos. Res. 2017, 197, 132–149. [Google Scholar] [CrossRef]
- Zhang, H.-W.; Song, J.; Wang, G.; Wu, X.-Y.; Li, J. Spatiotemporal characteristic and forecast of drought in northern Xinjiang, China. Ecol. Indic. 2021, 127, 107712. [Google Scholar] [CrossRef]
- Wang, W.; Tian, B.; Li, J. Climate Change in Eastern Region of Xinjiang in the Past 50 Yearsand Its Effects on the Local Ecological Environment. Res. Soil Water Conserv. 2014, 21, 249–254. [Google Scholar]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Rao, A.R.; Hamed, K. Multi-taper method of analysis of periodicities in hydrologic data. J. Hydrol. 2003, 279, 125–143. [Google Scholar]
- van der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Kalnay, E.; Mangoud, M.A. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Bao, A.; Xing, W.; Feng, X.; De Maeyer, P.; Frankl, A. Identifying climate change impacts on water resources in Xinjiang, China. Sci. Total Environ. 2019, 676, 613–626. [Google Scholar] [CrossRef]
- Li, N.; Lin, H.; Wang, T.; Liu, Y.; Chen, X.; Hu, X. Impact of climate change on cotton growth and yields in Xinjiang, China. Field Crops Res. 2020, 247, 107590. [Google Scholar] [CrossRef]
- Yao, J.; Hu, W.; Chen, Y.; Huo, W.; Zhao, Y.; Mao, W.; Yang, Q. Hydro-climatic changes and their impacts on vegetation in Xinjiang, Central Asia. Sci. Total Environ. 2019, 660, 724–732. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Li, W.; Wang, M.; Sun, G. Impacts of climatic change on river runoff in northern Xinjiang of China over last fifty years. Chin. Geogr. Sci. 2010, 20, 193–201. [Google Scholar] [CrossRef]
- Li, J.; Zeng, Q. A unified monsoon index. Geophys. Res. Lett. 2002, 29, 115-1–115-4. [Google Scholar] [CrossRef]
- Chen, F.; Chen, Y.; Bakhtiyorov, Z.; Zhang, H.; Man, W.; Chen, F. Central Asian river streamflows have not continued to increase during the recent warming hiatus. Atmos. Res. 2020, 246, 105124. [Google Scholar] [CrossRef]
- Ren, G.; Zhao, Y. Relationship between the Subtropical Westerly Jet and Summer Rainfall over Central Asia from 1961 to 2016. Plateau Meteorol. 2022, 41, 1425–1434. [Google Scholar]
- Huang, W.; Feng, S.; Chen, J.; Chen, F. Physical mechanisms of summer precipitation variations in the Tarim Basin in northwestern China. J. Clim. 2015, 28, 3579–3591. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Lu, H.; Jin, L.; Du, Y.; Chen, F. Increasing summer precipitation in arid Central Asia linked to the weakening of the East Asian summer monsoon in the recent decades. Int. J. Climatol. 2021, 41, 1024–1038. [Google Scholar] [CrossRef]
- Zou, S.; Duan, W.L.; Christidis, N.; Nover, D.; Abuduwaili, J.; De Maeyer, P.; Van De Voorde, T. An extreme rainfall event in summer 2018 of Hami city in eastern Xinjiang, China. Adv. Clim. Chang. Res. 2021, 12, 795–803. [Google Scholar] [CrossRef]
- Wang, S.; Huang, J.; Huang, G.; Luo, F.; Ren, Y.; He, Y. Enhanced impacts of Indian Ocean Sea surface temperature on the dry/wet variations over northwest China. J. Geophys. Res. Atmos. 2022, 127, e2022JD036533. [Google Scholar] [CrossRef]
- Ding, Y.; Wu, P.; Liu, Y. Modulation of sea surface temperature in three oceans on precipitation increase over Northwest China during the past 60 years: A review. Front. Clim. 2022, 4, 1015225. [Google Scholar] [CrossRef]
- Yin, X.; Zhou, L.T. Strengthened relationships of northwest China wintertime precipitation with ENSO and midlatitude North Atlantic SST since the mid-1990s. J. Clim. 2020, 33, 3967–3988. [Google Scholar] [CrossRef]
- Zhou, L.T.; Huang, R.H. Interdecadal variability of summer rainfall in Northwest China and its possible causes. Int. J. Climatol. A J. R. Meteorol. Soc. 2010, 30, 549–557. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, X.; Yao, J.; Dong, X.; Li, H. The concurrent effects of the South Asian monsoon and the plateau monsoon over the Tibetan Plateau on summer rainfall in the Tarim Basin of China. Int. J. Climatol. 2019, 39, 74–88. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, J.; Liu, W.; Han, L. Precipitation seesaw phenomenon and its formation mechanism in the eastern and western parts of Northwest China during the flood season. Sci. China Earth Sci. 2019, 62, 2083–2098. [Google Scholar] [CrossRef]
- Chen, Y.-N.; Li, W.-H.; Xu, C.-C.; Hao, X.-M. Effects of climate change on water resources in Tarim River Basin, Northwest China. J. Environ. Sci. 2007, 19, 488–493. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Wang, P.; Zhong, H.; Wang, P. Sustainable agriculture development in Northwest China under the impacts of global climate change. Front. Nutr. 2021, 8, 706552. [Google Scholar] [CrossRef]
Meteorological Station | Longitude (E) | Latitude (N) | Elevation (m) | Period |
---|---|---|---|---|
Toksun | 88.06 | 42.77 | 49.5 | 1960–2022 |
Shanshan | 90.23 | 42.85 | 398.6 | 1960–2022 |
Turpan | 89.02 | 42.93 | 39.3 | 1960–2022 |
Hami | 93.52 | 42.81 | 744.6 | 1960–2022 |
Naomaohu | 94.98 | 43.75 | 479 | 1960–2022 |
Yiwu | 94.07 | 43.27 | 2000 | 1960–2022 |
Balikun | 93.05 | 43.06 | 1679.2 | 1960–2022 |
Toksun | Shanshan | Turpan | Hami | Naomaohu | Yiwu | |
---|---|---|---|---|---|---|
Shanshan | 0.32 ** | |||||
Turpan | 0.42 ** | 0.53 ** | ||||
Hami | 0.21 | 0.42 ** | 0.52 ** | |||
Naomaohu | 0.14 | 0.25 * | 0.29 * | 0.62 ** | ||
Yiwu | 0.13 | 0.36 ** | 0.27 * | 0.57 ** | 0.48 ** | |
Balikun | 0.13 | 0.37 ** | 0.23 | 0.59 ** | 0.53 ** | 0.56 ** |
Toksun | Shanshan | Turpan | Hami | Naomaohu | Yiwu | Balikun | |
---|---|---|---|---|---|---|---|
PC1 | 0.41 ** | 0.66 ** | 0.65 ** | 0.85 ** | 0.71 ** | 0.73 ** | 0.74 ** |
PC2 | 0.67 ** | 0.38 ** | 0.53 ** | −0.14 | −0.36 ** | −0.32 ** | −0.37 ** |
PC3 | 0.55 ** | −0.49 ** | −0.15 | 0.02 | 0.31 * | −0.07 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wang, S.; Chen, Y.; Zhang, H.; Zhang, J.; Xu, Y.; Wei, J. Climate Change in the Eastern Xinjiang of China and Its Connection to Northwestern Warm Humidification. Atmosphere 2023, 14, 1421. https://doi.org/10.3390/atmos14091421
Li L, Wang S, Chen Y, Zhang H, Zhang J, Xu Y, Wei J. Climate Change in the Eastern Xinjiang of China and Its Connection to Northwestern Warm Humidification. Atmosphere. 2023; 14(9):1421. https://doi.org/10.3390/atmos14091421
Chicago/Turabian StyleLi, Lu, Shijie Wang, Youping Chen, Heli Zhang, Jiyun Zhang, Yang Xu, and Jiachang Wei. 2023. "Climate Change in the Eastern Xinjiang of China and Its Connection to Northwestern Warm Humidification" Atmosphere 14, no. 9: 1421. https://doi.org/10.3390/atmos14091421
APA StyleLi, L., Wang, S., Chen, Y., Zhang, H., Zhang, J., Xu, Y., & Wei, J. (2023). Climate Change in the Eastern Xinjiang of China and Its Connection to Northwestern Warm Humidification. Atmosphere, 14(9), 1421. https://doi.org/10.3390/atmos14091421