Chemical Characterization and Optical Properties of the Aerosol in São Paulo, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aerosol Sampling and Analysis
2.2. Aerosol Columnar Optical Properties
2.3. Ångström Matrix
2.4. Positive Matrix Factorization (PMF)
3. Results and Discussion
3.1. Meteorology and Concentrations
3.2. Aerosol Composition
3.3. Source Apportionment
3.4. Aerosol Optical Properties and Size Distribution
3.5. Case Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janssen, N.A.H.; Gerlofs-Nijland, M.E.; Lanki, T.; Salonen, R.O.; Cassee, F.; Hoek, P.F.; Fischer, P.; Brunekreef, B.; Krzyzanowsk, M. Health Effects of Black Carbon; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2012; ISBN 978-92-890-0265-3. [Google Scholar]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global Estimates of Mortality Associated with Long-Term Exposure to Outdoor Fine Particulate Matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N.; Noone, K. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Phys. Today 1998, 51, 88–90. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-92-9169-159-3. [Google Scholar]
- Lu, Q.; Liu, C.; Zhao, D.; Zeng, C.; Li, J.; Lu, C.; Wang, J.; Zhu, B. Atmospheric Heating Rate Due to Black Carbon Aerosols: Uncertainties and Impact Factors. Atmos. Res. 2020, 240, 104891. [Google Scholar] [CrossRef]
- Bahadur, R.; Praveen, P.S.; Xu, Y.; Ramanathan, V. Solar Absorption by Elemental and Brown Carbon Determined from Spectral Observations. Proc. Natl. Acad. Sci. USA 2012, 109, 17366–17371. [Google Scholar] [CrossRef] [PubMed]
- Koch, D.; Del Genio, A.D. Black Carbon Semi-Direct Effects on Cloud Cover: Review and Synthesis. Atmos. Chem. Phys. 2010, 10, 7685–7696. [Google Scholar] [CrossRef]
- Schultze, M.; Rockel, B. Direct and Semi-Direct Effects of Aerosol Climatologies on Long-Term Climate Simulations over Europe. Clim. Dyn. 2018, 50, 3331–3354. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, R.; Dai, T.; Xie, Y.; Shi, G. A Review of Aerosol Optical Properties and Radiative Effects. J. Meteorol. Res. 2014, 28, 1003–1028. [Google Scholar] [CrossRef]
- Cazorla, A.; Bahadur, R.; Suski, K.J.; Cahill, J.F.; Chand, D.; Schmid, B.; Ramanathan, V.; Prather, K.A. Relating Aerosol Absorption Due to Soot, Organic Carbon, and Dust to Emission Sources Determined from in-Situ Chemical Measurements. Atmos. Chem. Phys. 2013, 13, 9337–9350. [Google Scholar] [CrossRef]
- Ponczek, M.; Franco, M.A.; Carbone, S.; Rizzo, L.V.; Monteiro dos Santos, D.; Morais, F.G.; Duarte, A.; Barbosa, H.M.J.; Artaxo, P. Linking the Chemical Composition and Optical Properties of Biomass Burning Aerosols in Amazonia. Environ. Sci. Atmos. 2022, 2, 252–269. [Google Scholar] [CrossRef]
- Takemura, T.; Nakajima, T.; Dubovik, O.; Holben, B.N.; Kinne, S. Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model. J. Clim. 2002, 15, 333–352. [Google Scholar] [CrossRef]
- Seguel, R.J.; Gallardo, L.; Osses, M.; Rojas, N.Y.; Nogueira, T.; Menares, C.; De Fatima Andrade, M.; Belalcázar, L.C.; Carrasco, P.; Eskes, H.; et al. Photochemical Sensitivity to Emissions and Local Meteorology in Bogotá, Santiago, and São Paulo. Elem. Sci. Anthr. 2022, 10, 00044. [Google Scholar] [CrossRef]
- Miranda, R.M.; De Fatima Andrade, M.; Dutra Ribeiro, F.N.; Mendonça Francisco, K.J.; Pérez-Martínez, P.J. Source Apportionment of Fine Particulate Matter by Positive Matrix Factorization in the Metropolitan Area of São Paulo, Brazil. J. Clean. Prod. 2018, 202, 253–263. [Google Scholar] [CrossRef]
- Pereira, G.M.; Da Silva Caumo, S.E.; Grandis, A.; Do Nascimento, E.Q.M.; Correia, A.L.; De Melo Jorge Barbosa, H.; Marcondes, M.A.; Buckeridge, M.S.; De Castro Vasconcellos, P. Physical and Chemical Characterization of the 2019 “Black Rain” Event in the Metropolitan Area of São Paulo, Brazil. Atmos. Environ. 2021, 248, 118229. [Google Scholar] [CrossRef]
- Butt, E.W.; Conibear, L.; Reddington, C.L.; Darbyshire, E.; Morgan, W.T.; Coe, H.; Artaxo, P.; Brito, J.; Knote, C.; Spracklen, D.V. Large Air Quality and Human Health Impacts Due to Amazon Forest and Vegetation Fires. Environ. Res. Commun. 2020, 2, 095001. [Google Scholar] [CrossRef]
- Miranda, R.M.; Lopes, F.; Do Rosário, N.É.; Yamasoe, M.A.; Landulfo, E.; De Fatima Andrade, M. The Relationship between Aerosol Particles Chemical Composition and Optical Properties to Identify the Biomass Burning Contribution to Fine Particles Concentration: A Case Study for São Paulo City, Brazil. Environ. Monit. Assess. 2017, 189, 6. [Google Scholar] [CrossRef]
- De Arruda Moreira, G.; Da Silva Andrade, I.; Cacheffo, A.; Da Silva Lopes, F.J.; Calzavara Yoshida, A.; Gomes, A.A.; Da Silva, J.J.; Landulfo, E. Influence of a Biomass-Burning Event in PM2.5 Concentration and Air Quality: A Case Study in the Metropolitan Area of São Paulo. Sensors 2021, 21, 425. [Google Scholar] [CrossRef]
- Lemes, M.D.C.R.; Reboita, M.S.; Capucin, B.C. Impactos Das Queimadas Na Amazônia No Tempo Em São Paulo Na Tarde Do Dia 19 de Agosto de 2019. Rev. Bras. Geog. Fis. 2020, 13, 983–993. [Google Scholar] [CrossRef]
- Martins, J.V.; Artaxo, P.; Liousse, C.; Reid, J.S.; Hobbs, P.V.; Kaufman, Y.J. Effects of Black Carbon Content, Particle Size, and Mixing on Light Absorption by Aerosols from Biomass Burning in Brazil. J. Geophys. Res. 1998, 103, 32041–32050. [Google Scholar] [CrossRef]
- Yamasoe, M.A.; Do Rosário, N.M.E.; Barros, K.M. Downward Solar Global Irradiance at the Surface in São Paulo City-The Climatological Effects of Aerosol and Clouds: SW Aerosol and Cloud Radiative Effect. J. Geophys. Res. Atmos. 2017, 122, 391–404. [Google Scholar] [CrossRef]
- Andrade, M.D.F.; Kumar, P.; De Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; De Miranda, R.M.; Albuquerque, T.; et al. Air Quality in the Megacity of São Paulo: Evolution over the Last 30 Years and Future Perspectives. Atmos. Environ. 2017, 159, 66–82. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Miranda, R.M.; De Fatima Andrade, M.; Fornaro, A.; Astolfo, R.; De Andre, P.A.; Saldiva, P. Urban Air Pollution: A Representative Survey of PM2.5 Mass Concentrations in Six Brazilian Cities. Air Qual. Atmos. Health 2012, 5, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Watson, J.G.; Pritchett, L.C.; Pierson, W.R.; Frazier, C.A.; Purcell, R.G. The Dri Thermal/Optical Reflectance Carbon Analysis System: Description, Evaluation and Applications in U.S. Air Quality Studies. Atmos. Environ. Part A Gen. Top. 1993, 27, 1185–1201. [Google Scholar] [CrossRef]
- Logothetis, S.-A.; Salamalikis, V.; Kazantzidis, A. Aerosol Classification in Europe, Middle East, North Africa and Arabian Peninsula Based on AERONET Version 3. Atmos. Res. 2020, 239, 104893. [Google Scholar] [CrossRef]
- Ningombam, S.S.; Larson, E.J.L.; Dumka, U.C.; Estellés, V.; Campanelli, M.; Steve, C. Long-Term (1995–2018) Aerosol Optical Depth Derived Using Ground Based AERONET and SKYNET Measurements from Aerosol Aged-Background Sites. Atmos. Pollut. Res. 2019, 10, 608–620. [Google Scholar] [CrossRef]
- Morais, F.G. Estudo das Propriedades de Absorção de Black Carbon e Brown Carbon Utilizando Sensoriamento Remoto e Medidas In Situ na Amazônia. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brasil, 2022. [Google Scholar]
- Paatero, P.; Tapper, U. Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Paatero, P. Least Squares Formulation of Robust Non-Negative Factor Analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor Modeling of Ambient Particulate Matter Data Using Positive Matrix Factorization: Review of Existing Methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef]
- Sánchez-Ccoyllo, O.R.; De Fátima Andrade, M. The Influence of Meteorological Conditions on the Behavior of Pollutants Concentrations in São Paulo, Brazil. Environ. Pollut. 2002, 116, 257–263. [Google Scholar] [CrossRef]
- Alves de Oliveira, B.F.; Bottino, M.J.; Nobre, P.; Nobre, C.A. Deforestation and Climate Change Are Projected to Increase Heat Stress Risk in the Brazilian Amazon. Commun. Earth Environ. 2021, 2, 207. [Google Scholar] [CrossRef]
- Silva Dias, M.A.F.; Dias, J.; Carvalho, L.M.V.; Freitas, E.D.; Silva Dias, P.L. Changes in Extreme Daily Rainfall for São Paulo, Brazil. Clim. Chang. 2013, 116, 705–722. [Google Scholar] [CrossRef]
- Sugahara, S.; Da Rocha, R.P.; Silveira, R. Non-Stationary Frequency Analysis of Extreme Daily Rainfall in Sao Paulo, Brazil. Int. J. Climatol. 2009, 29, 1339–1349. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Ambrizzi, T.; Young, A.; Barreto, N.J.C.; Ramos, A.M. Trends in Extreme Rainfall and Hydrogeometeorological Disasters in the Metropolitan Area of São Paulo: A Review. Ann. N. Y. Acad. Sci. 2020, 1472, 5–20. [Google Scholar] [CrossRef]
- Brito, J.; Carbone, S.; dos Santos, D.A.M.; Dominutti, P.; Alves, N.d.O.; Rizzo, L.V.; Artaxo, P. Disentangling Vehicular Emission Impact on Urban Air Pollution Using Ethanol as a Tracer. Sci. Rep. 2018, 8, 10679. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, M.F.; de Miranda, R.M.; Fornaro, A.; Kerr, A.; Oyama, B.; de Andre, P.A.; Saldiva, P. Vehicle Emissions and PM2.5 Mass Concentrations in Six Brazilian Cities. Air Qual. Atmos. Health 2012, 5, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, L.F. Caracterização do Material Particulado Fino, e Identificação de Fontes Emissoras no Campus Leste da Universidade de São Paulo, a Escola de Artes, Ciências e Humanidades (EACH-USP). Master Thesis, Universidade de São Paulo, São Paulo, Brasil, 2021. [Google Scholar]
- Pereira, G.M.; Teinilä, K.; Custódio, D.; Gomes Santos, A.; Xian, H.; Hillamo, R.; Alves, C.A.; Bittencourt De Andrade, J.; Olímpio Da Rocha, G.; Kumar, P.; et al. Particulate Pollutants in the Brazilian City of São Paulo: 1-Year Investigation for the Chemical Composition and Source Apportionment. Atmos. Chem. Phys. 2017, 17, 11943–11969. [Google Scholar] [CrossRef]
- Benchrif, A.; Tahri, M.; Guinot, B.; Chakir, E.M.; Zahry, F.; Bagdhad, B.; Bounakhla, M.; Cachier, H.; Costabile, F. Aerosols in Northern Morocco-2: Chemical Characterization and PMF Source Apportionment of Ambient PM2.5. Atmosphere 2022, 13, 1701. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, C.; Wang, Z.; Pang, X.; Zhong, Y.; Han, X.; Ning, P. Chemical Composition and Source Apportionment of PM2.5 in a Border City in Southwest China. Atmosphere 2021, 13, 7. [Google Scholar] [CrossRef]
- Furu, E.; Angyal, A.; Szoboszlai, Z.; Papp, E.; Török, Z.; Kertész, Z. Characterization of Aerosol Pollution in Two Hungarian Cities in Winter 2009–2010. Atmosphere 2022, 13, 554. [Google Scholar] [CrossRef]
- Pio, C.; Alves, C.; Nunes, T.; Cerqueira, M.; Lucarelli, F.; Nava, S.; Calzolai, G.; Gianelle, V.; Colombi, C.; Amato, F.; et al. Source Apportionment of PM2.5 and PM10 by Ionic and Mass Balance (IMB) in a Traffic-Influenced Urban Atmosphere, in Portugal. Atmos. Environ. 2020, 223, 117217. [Google Scholar] [CrossRef]
- Moran-Zuloaga, D.; Merchan-Merchan, W.; Rodríguez-Caballero, E.; Hernick, P.; Cáceres, J.; Cornejo, M.H. Overview and Seasonality of PM10 and PM2.5 in Guayaquil, Ecuador. Aerosol Sci. Eng. 2021, 5, 499–515. [Google Scholar] [CrossRef]
- Silva, J.; Rojas, J.; Norabuena, M.; Molina, C.; Toro, R.A.; Leiva-Guzmán, M.A. Particulate Matter Levels in a South American Megacity: The Metropolitan Area of Lima-Callao, Peru. Environ. Monit. Assess. 2017, 189, 635. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, V.; Pérez, T.; Donoso, L.; Müller, T.; Wiedensohler, A. Black Carbon and Particulate Matter Mass Concentrations in the Metropolitan District of Caracas, Venezuela: An Assessment of Temporal Variation and Contributing Sources. Elem. Sci. Anthr. 2022, 10, 00024. [Google Scholar] [CrossRef]
- Sanguineti, P.B.; Lanzaco, B.L.; López, M.L.; Achad, M.; Palancar, G.G.; Olcese, L.E.; Toselli, B.M. PM2.5 Monitoring during a 10-Year Period: Relation between Elemental Concentration and Meteorological Conditions. Environ. Monit. Assess. 2020, 192, 313. [Google Scholar] [CrossRef] [PubMed]
- Connerton, P.; Vicente De Assunção, J.; Maura De Miranda, R.; Dorothée Slovic, A.; José Pérez-Martínez, P.; Ribeiro, H. Air Quality during COVID-19 in Four Megacities: Lessons and Challenges for Public Health. Int. J. Environ. Res. Public Health 2020, 17, 5067. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Da Silva, M.; Vicente De Assunção, J.; De Fátima Andrade, M.; Pesquero, C.R. Characterization of Metal and Trace Element Contents of Particulate Matter (PM10) Emitted by Vehicles Running on Brazilian Fuels—Hydrated Ethanol and Gasoline with 22% of Anhydrous Ethanol. J. Toxicol. Environ. Health Part A 2010, 73, 901–909. [Google Scholar] [CrossRef]
- Rahim, M.D.A.; Kristufek, S.L.; Pan, S.; Richardson, J.J.; Caruso, F. Phenolic Building Blocks for the Assembly of Functional Materials. Angew. Chem. Int. Ed. 2019, 58, 1904–1927. [Google Scholar] [CrossRef]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for Estimating Uncertainty in PMF Solutions: Examples with Ambient Air and Water Quality Data and Guidance on Reporting PMF Results. Sci. Total Environ. 2015, 518–519, 626–635. [Google Scholar] [CrossRef]
- Hetem, I.; Andrade, M. Characterization of Fine Particulate Matter Emitted from the Resuspension of Road and Pavement Dust in the Metropolitan Area of São Paulo, Brazil. Atmosphere 2016, 7, 31. [Google Scholar] [CrossRef]
- Mehdi, Y.; Hornick, J.-L.; Istasse, L.; Dufrasne, I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules 2013, 18, 3292–3311. [Google Scholar] [CrossRef]
- Monteiro dos Santos, D.; Rizzo, L.V.; Carbone, S.; Schlag, P.; Artaxo, P. Physical and Chemical Properties of Urban Aerosols in São Paulo, Brazil: Links between Composition and Size Distribution of Submicron Particles. Atmos. Chem. Phys. 2021, 21, 8761–8773. [Google Scholar] [CrossRef]
- Hristova, E.; Veleva, B.; Georgieva, E.; Branzov, H. Application of Positive Matrix Factorization Receptor Model for Source Identification of PM10 in the City of Sofia, Bulgaria. Atmosphere 2020, 11, 890. [Google Scholar] [CrossRef]
- Anastasopolos, A.T.; Hopke, P.K.; Sofowote, U.M.; Zhang, J.J.Y.; Johnson, M. Local and Regional Sources of Urban Ambient PM2.5 Exposures in Calgary, Canada. Atmos. Environ. 2022, 290, 119383. [Google Scholar] [CrossRef]
- Che, H.; Zhang, X.-Y.; Xia, X.; Goloub, P.; Holben, B.; Zhao, H.; Wang, Y.; Zhang, X.-C.; Wang, H.; Blarel, L.; et al. Ground-Based Aerosol Climatology of China: Aerosol Optical Depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos. Chem. Phys. 2015, 15, 7619–7652. [Google Scholar] [CrossRef]
- Fortunato Dos Santos Oliveira, D.C.; Montilla-Rosero, E.; Da Silva Lopes, F.J.; Morais, F.G.; Landulfo, E.; Hoelzemann, J.J. Aerosol Properties in the Atmosphere of Natal/Brazil Measured by an AERONET Sun-Photometer. Environ. Sci. Pollut. Res. 2021, 28, 9806–9823. [Google Scholar] [CrossRef]
- da Palácios, R.S.; Morais, F.G.; Landulfo, E.; de M. Franco, M.A.; Kuhnen, I.A.; Marques, J.B.; de S. Nogueira, J.; do V. Júnior, L.C.G.; Rodrigues, T.R.; Romera, K.S.; et al. Long Term Analysis of Optical and Radiative Properties of Aerosols in the Amazon Basin. Aerosol Air Qual. Res. 2020, 20, 139–154. [Google Scholar] [CrossRef]
- Morais, F.G.; Franco, M.A.; Palácios, R.; Machado, L.A.T.; Rizzo, L.V.; Barbosa, H.M.J.; Jorge, F.; Schafer, J.S.; Holben, B.N.; Landulfo, E.; et al. Relationship between Land Use and Spatial Variability of Atmospheric Brown Carbon and Black Carbon Aerosols in Amazonia. Atmosphere 2022, 13, 1328. [Google Scholar] [CrossRef]
- da Silva Palácios, R.; Artaxo, P.; Cirino, G.G.; Nakale, V.; de Morais, F.G.; Rothmund, L.D.; Biudes, M.S.; Machado, N.G.; Curado, L.F.A.; Marques, J.B.; et al. Long-Term Measurements of Aerosol Optical Properties and Radiative Forcing (2011–2017) over Central Amazonia. Atmosfera 2022, 35, 143–163. [Google Scholar] [CrossRef]
- Cúneo, L.; Ulke, A.G.; Cerne, B. Advances in the Characterization of Aerosol Optical Properties Using Long-Term Data from AERONET in Buenos Aires. Atmos. Pollut. Res. 2022, 13, 101360. [Google Scholar] [CrossRef]
- Foyo-Moreno, I.; Alados, I.; Guerrero-Rascado, J.L.; Lyamani, H.; Pérez-Ramírez, D.; Olmo, F.J.; Alados-Arboledas, L. Contribution to Column-Integrated Aerosol Typing Based on Sun-Photometry Using Different Criteria. Atmos. Res. 2019, 224, 1–17. [Google Scholar] [CrossRef]
- Mai, B.; Deng, X.; Xia, X.; Che, H.; Guo, J.; Liu, X.; Zhu, J.; Ling, C. Column-Integrated Aerosol Optical Properties of Coarse- and Fine-Mode Particles over the Pearl River Delta Region in China. Sci. Total Environ. 2018, 622–623, 481–492. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, Y.; Xin, J.; Liu, Z.; Ma, Y.; Gao, D.; Wu, J.; Zhang, W.; Wang, Y.; Shen, P. The Aerosol Optical Properties and PM 2.5 Components over the World’s Largest Industrial Zone in Tangshan, North China. Atmos. Res. 2018, 201, 226–234. [Google Scholar] [CrossRef]
- Cappa, C.D.; Kolesar, K.R.; Zhang, X.; Atkinson, D.B.; Pekour, M.S.; Zaveri, R.A.; Zelenyuk, A.; Zhang, Q. Understanding the Optical Properties of Ambient Sub- and Supermicron Particulate Matter: Results from the CARES 2010 Field Study in Northern California. Atmos. Chem. Phys. 2016, 16, 6511–6535. [Google Scholar] [CrossRef]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; DeCarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption Angstrom Exponent in AERONET and Related Data as an Indicator of Aerosol Composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef]
- Bergstrom, R.W.; Pilewskie, P.; Russell, P.B.; Redemann, J.; Bond, T.C.; Quinn, P.K.; Sierau, B. Spectral Absorption Properties of Atmospheric Aerosols. Atmos. Chem. Phys. 2007, 7, 5937–5943. [Google Scholar] [CrossRef]
- Ealo, M.; Alastuey, A.; Ripoll, A.; Pérez, N.; Minguillón, M.C.; Querol, X.; Pandolfi, M. Detection of Saharan Dust and Biomass Burning Events Using Near-Real-Time Intensive Aerosol Optical Properties in the North-Western Mediterranean. Atmos. Chem. Phys. 2016, 16, 12567–12586. [Google Scholar] [CrossRef]
- Liu, X.; Gu, J.; Li, Y.; Cheng, Y.; Qu, Y.; Han, T.; Wang, J.; Tian, H.; Chen, J.; Zhang, Y. Increase of Aerosol Scattering by Hygroscopic Growth: Observation, Modeling, and Implications on Visibility. Atmos. Res. 2013, 132–133, 91–101. [Google Scholar] [CrossRef]
- Shao, P.; Xin, J.; Zhang, X.; Gong, C.; Ma, Y.; Wang, Y.; Wang, S.; Hu, B.; Ren, X.; Wang, B. Aerosol Optical Properties and Their Impacts on the Co–Occurrence of Surface Ozone and Particulate Matter in Kunming City, on the Yunnan–Guizhou Plateau of China. Atmos. Res. 2022, 266, 105963. [Google Scholar] [CrossRef]
- Janjai, S.; Nunez, M.; Masiri, I.; Wattan, R.; Buntoung, S.; Jantarach, T.; Promsen, W. Aerosol Optical Properties at Four Sites in Thailand. Atmospheric Clim. Sci. 2012, 2, 441–453. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Dubovik, O.; Smirnov, A.; Goloub, P.; Chen, H.B.; Chatenet, B.; Gomes, L.; Zhang, X.-Y.; Tsay, S.-C.; et al. Columnar Aerosol Optical Properties at AERONET Sites in Central Eastern Asia and Aerosol Transport to the Tropical Mid-Pacific: Aerosol in Asia and the Mid-Pacific. J. Geophys. Res. 2005, 110, D06202. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Bahadur, R.; Feng, Y.; Russell, L.M.; Ramanathan, V. Impact of California’s Air Pollution Laws on Black Carbon and Their Implications for Direct Radiative Forcing. Atmos. Environ. 2011, 45, 1162–1167. [Google Scholar] [CrossRef]
Month/Year | PM2.5 (μg/m3) Mean (SD) | BC (μg/m3) Mean (SD) | Temperature (°C) | Relative Humidity (%) | Wind Speed (m/s) | Accum. Precip. (mm) | Fire Spots |
---|---|---|---|---|---|---|---|
N | 155 | 404 | 420 | 420 | 407 | ||
July/2019 | 35.4 (13.4) | 2.8 (1.9) | 15.8 (3.0) | 81 (6) | 2.1 (0.7) | 147.5 | 13,394 |
August/2019 | 28.4 (14.3) | 2.6 (1.8) | 17.0 (2.7) | 81 (8) | 2.7 (0.6) | 5.0 | 51,935 |
September/2019 | 28.1 (15.4) | 2.2 (1.7) | 19.5 (3.5) | 82 (12) | 2.7 (0.8) | 76.6 | 53,234 |
October/2019 | 14.7 (12.6) | 1.5 (0.7) | 21.6 (2.5) | 79 (9) | 2.5 (0.5) | 45.8 | 25,613 |
November/2019 | 11.2 (3.6) | 1.0 (0.4) | 21.2 (2.4) | 84 (8) | 2.8 (0.6) | 112.0 | 13,014 |
December/2019 | 11.7 (5.6) | 1.1 (0.6) | 22.3 (1.8) | 83 (6) | 2.5 (0.7) | 259.4 | 5113 |
January/2020 | 10.2 (6.5) | 1.2 (0.6) | 22.6 (2.1) | 84 (8) | 2.4 (0.7) | 279.2 | 2866 |
February/2020 | 8.3 (4.5) | 1.0 (0.5) | 21.8 (2.1) | 90 (5) | 2.5 (0.6) | 493.8 | 2657 |
March/2020 | 11.5 (4.3) | 0.9 (0.4) | 21.2 (1.7) | 83 (5) | 2.5 (0.5) | 69.4 | 3880 |
April/2020 | 13.1 (3.9) | 1.0 (0.6) | 19.5 (1.7) | 77 (4) | 2.5 (0.6) | 7.4 | 4117 |
May/2020 | 18.8 (12.9) | 1.3 (0.8) | 16.9 (2.0) | 74 (8) | 2.8 (1.2) | 11.0 | 4002 |
June/2020 | 20.9 (12.7) | 4.0 (2.5) | 18.3 (1.9) | 78 (9) | 2.6 (0.9) | 152.4 | 7109 |
July/2020 | 22.2 (8.7) | 3.0 (1.6) | 17.4 (2.1) | 75 (9) | 2.9 (0.9) | 12.6 | 15,804 |
August/2020 | 18.5 (13.5) | 2.4 (1.4) | 16.8 (3.5) | 77 (10) | 2.6 (0.4) | 66.2 | 50,694 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, E.V.R.; do Rosario, N.E.; Yamasoe, M.A.; Morais, F.G.; Martinez, P.J.P.; Landulfo, E.; Maura de Miranda, R. Chemical Characterization and Optical Properties of the Aerosol in São Paulo, Brazil. Atmosphere 2023, 14, 1460. https://doi.org/10.3390/atmos14091460
Vieira EVR, do Rosario NE, Yamasoe MA, Morais FG, Martinez PJP, Landulfo E, Maura de Miranda R. Chemical Characterization and Optical Properties of the Aerosol in São Paulo, Brazil. Atmosphere. 2023; 14(9):1460. https://doi.org/10.3390/atmos14091460
Chicago/Turabian StyleVieira, Erick Vinicius Ramos, Nilton Evora do Rosario, Marcia Akemi Yamasoe, Fernando Gonçalves Morais, Pedro José Perez Martinez, Eduardo Landulfo, and Regina Maura de Miranda. 2023. "Chemical Characterization and Optical Properties of the Aerosol in São Paulo, Brazil" Atmosphere 14, no. 9: 1460. https://doi.org/10.3390/atmos14091460
APA StyleVieira, E. V. R., do Rosario, N. E., Yamasoe, M. A., Morais, F. G., Martinez, P. J. P., Landulfo, E., & Maura de Miranda, R. (2023). Chemical Characterization and Optical Properties of the Aerosol in São Paulo, Brazil. Atmosphere, 14(9), 1460. https://doi.org/10.3390/atmos14091460