Quantifying the Impact of Urban Growth on Urban Surface Heat Islands in the Bangkok Metropolitan Region, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Data Analysis
- The normalized difference vegetation index (NDVI) is a widely used metric in remote sensing and environmental studies to assess the health and density of vegetation cover. It is particularly valuable in conjunction with the analysis of land surface temperature (LST). NDVI is derived from satellite or aerial imagery and is calculated using the following formula:
- Satellite data were utilized for the analysis of surface temperature, with the 6th wavelength (band 6) specifically employed for this purpose. The satellite image was measured using the thermal infrared wavelength (band 6) at a wavelength of 11.475 µm. The analysis involved five steps, as outlined below:
- -
- Determination of TOA (top of atmospheric) spectral radiance is exhibited as shown in Equation (2):L(λ) = ML ∗ Qcal + ALLλ = TOA spectral radiance (Watts/(m2 ∗ sr ∗ μm));ML = band-specific multiplicative rescaling factor from the metadata (RADIANCE_MULT_BAND_10);AL = band-specific additive rescaling factor from the metadata (RADIANCE_ADD_BAND_10).Qcal = quantized and calibrated standard product pixel values (DN).
- -
- Brightness temperature (BT):T = top of atmosphere brightness temperature (K);Lλ = TOA spectral radiance (Watts/(m2 ∗ sr ∗ μm));K1 = band-specific thermal conversion constant from the metadata (K1_CONSTANT_BAND_10);K2 = band-specific thermal conversion constant from the metadata (K2_CONSTANT_BAND_10).
- -
- Proportion of vegetation (Pv):Pv = Square (NDVI − NDVImin/NDVImax − NDVImin)
- -
- Land surface emissivity (LSE):LSE = 0.004 ∗ Pv + 0.986
- -
- Land surface temperature (LST):LST = BT/1 + w ∗ (BT/p) ∗ Ln (LSE)BT = satellite temperature;LSE = land surface emissivity;W = wavelength of emitted radiance (11.5 μm);P = h ∗ c/s (1.438 × 10−2 mK);h = Planck’s constant (6.626 × 10−34 Js);s = Boltzmann constant (1.38 × 10−23 J/K);c = velocity of light (2.998 × 108 m/s);p = 14,380.
- The assessment of built-up area expansion or urban growth analysis was conducted for the years 2000, 2010, and 2020 within the Bangkok Metropolitan Region utilizing Landsat satellite imagery with a resolution of 30 m. The classification method employed for distinguishing built-up and non-built-up areas involved unsupervised classification. Additionally, analysis was performed using the normalized difference built-up index (NDBI), which serves as an indicator of the relationship between urban surface temperature and land-use type or coverage. This investigation is based on the evaluation of satellite-detected data, considering the wave reflection values from the density of constructed objects during both the day and night, along with the corresponding temperatures for each period, as expressed in Equation (7):NDBI = building index;NIR = short-wave infrared;SWIR = near-infrared infrared.
3. Results
3.1. Urban Growth
3.2. Land Surface Temperature (LST)
3.3. Relationship between Urban and Land Surface Temperature
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, K.; Che, Y.; Jiang, J. Grading surface urban heat island and investigating factor weight based on interpretable deep learning model across global cities. Environ. Int. 2023, 180, 108–196. [Google Scholar] [CrossRef]
- Shen, P.; Zhao, S.; Ma, Y.; Liu, S. Urbanization-induced Earth’s surface energy alteration and warming: A global spatiotemporal analysis. Remote Sens. Environ. 2023, 284, 113–361. [Google Scholar] [CrossRef]
- Lin, J.; Wei, K.; Guan, Z. Exploring the connection between morphological characteristic of built-up areas and surface heat islands based on MSPA. Urban Clim. 2024, 53, 101–764. [Google Scholar] [CrossRef]
- Sun, R.; Lü, Y.; Yang, X.; Chen, L. Understanding the variability of urban heat islands from local background climate and urbanization. J. Clean. Prod. 2019, 208, 743–752. [Google Scholar] [CrossRef]
- Fitzpatrick-Lins, K. Comparison of sampling procedures and data analysis for a land-use and land cover map. Photogramm. Eng. Remote Sens. 1981, 47, 343–351. [Google Scholar]
- Araya, Y.H.; Cabral, P. Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra, Portugal. Remote Sens. 2010, 2, 1549–1563. [Google Scholar] [CrossRef]
- Bhatta, B. Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata. India Int. J. Remote Sens. 2009, 30, 4733–4746. [Google Scholar] [CrossRef]
- Iamtrakul, P.; Padon, A.; Klaylee, J. Analysis of Urban Sprawl and Growth Pattern Using Geospatial Technologies in Megacity, Bangkok, Thailand. Geoinformatics and Data Analysis. Lect. Notes Data Eng. Commun. Technol. ICGDA 2021, 143, 109–123. [Google Scholar]
- Wangchongyu, P.; Rui, W.; Jin, D.; Weijun, G.; Zhengxi, F. Surface and canopy urban heat islands: Does urban morphology result in the spatiotemporal differences? Urban Clim. 2022, 42, 101136. [Google Scholar]
- Hamoodi, M.N.; Corner, R.; Dewan, A. Thermophysical behaviour of LULC surfaces and their effect on the urban thermal environment. J. Spat. Sci. 2019, 64, 111–130. [Google Scholar] [CrossRef]
- Srivanit, M.; Iamtrakul, P. Spatial Patterns of Greenspace Cool Islands and Their Relationship to Cooling Effectiveness in the Tropical City of Chiang Mai, Thailand, Environmental Monitoring and Assessment; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 191, p. 530. [Google Scholar]
- Srivanit, M.; Hokao, K.; Iamtrakul, P. Classifying Thermal Climate Zones to Support Urban Environmental Planning and Management in the Bangkok Metropolitan Area. J. Archit. Plan. Res. Stud. (JARS) 2014, 11, 73–92. [Google Scholar]
- Iamtrakul, P.; Nusook, T.; Ubolchay, P. Impact of urban heat Island on daily life of people in Bangkok Metropolitan Region (BMR). J. Archit. Plan. Res. Stud. (JARS) 2014, 11, 53–72. [Google Scholar]
- Kotharkar, R.; Ramesh, A.; Bagade, A. Urban Heat Island studies in South Asia: A critical review. Urban Clim. 2018, 24, 1011–1026. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban. Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Yang, L.; Mu, K.; Zhang, M.; Liu, J. Urban heat island effects of various urban morphologies under regional climate conditions. Sci. Total Environ. 2020, 743, 140589. [Google Scholar] [CrossRef]
- Cheval, S.; Popa, A.M.; Șandric, I.; Iojă, I.C. Exploratory Analysis of Cooling Effect of Urban Lakes on Land Surface Temperature in Bucharest (Romania) using Landsat imagery. Urban Clim. 2020, 34, 100696. [Google Scholar] [CrossRef]
- Lemus-Canovas, M.; Martin-Vide, J.; Moreno-Garcia, M.C.; Lopez-Bustins, J.A. Estimating Barcelona’s Metropolitan Daytime Hot and cold Poles Using Landsat-8 Land Surface Temperature. Sci. Total Environ. 2020, 699, 134307. [Google Scholar] [CrossRef]
- Logan, T.M.; Zaitchik, B.; Guikema, S.; Nisbet, A. Night and day: The Influence and Relative Importance of Urban Characteristics on Remotely Sensed Land Surface Temperature. Remote Sens. Environ. 2020, 247, 111861. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Fathololoumi, S.; Kiavarz, M.; Arsanjani, J.J.; Alavipanah, S.K. Modelling Surface Heat Island Intensity According to Differences of Biophysical Characteristics: A Case Study of Amol City. Iran. Ecol. Indic. 2020, 109, 105816. [Google Scholar] [CrossRef]
- Peng, T.; Jialin, L.; Luodan, C.; Ruiliang, P.; Zhongyi, W.; Haitao, Z.; Huilin, C.; Hongbo, G. Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sustain. Cities Soc. 2021, 74, 103208. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Liang, Z.; Wu, S.; Wang, Y.; Wei, F.; Huang, J.; Shen, J.; Li, S. The relationship between urban form and heat island intensity along the urban development gradients. Sci. Total Environ. 2020, 708, 135011. [Google Scholar] [CrossRef] [PubMed]
- The Geo-Informatics and Space Technology Development Agency. Satellite Images of the Landsat. 2021. Available online: https://earthexplorer.usgs.gov/ (accessed on 1 May 2023).
- Padon, A.; Iamtrakul, P.; Punson, B.; Klaylee, J. The Study on Association between Urban Green Space and Temperature Changes in Mega City. In Proceedings of the 2020 International Conference and Utility Exhibition on Energy, Environment and Climate Change (ICUE), Asian Institute of Technology, Pattaya City, Thailand, 20–22 October 2020. [Google Scholar]
- Iamtrakul, P.; Chayphong, S.; Klaylee, J. Measuring the Behavior and Preference for Energy Saving and Household Carbon Emission Reduction of Urban Residents in Bangkok and Its Vicinities, Thailand. Lowl. Technol. Int. 2020, 22, 239–248. [Google Scholar]
- Klaylee, J.; Padon, A.; Iamtrakul, P. Challenges of sustainable mobility: Context of car dependency, suburban areas in Thailand. Geogr. Pannonica 2023, 27, 145–158. [Google Scholar] [CrossRef]
- Padon, A.; Iamtrakul, P.; Chayut, T. The Study of Urbanization Effect on the Land Use Changes and Urban Infrastructures Development in the Metropolitan Areas, Thailand. IOP Conf. Ser. Earth Environ. Sci. 2021, 738, 012077. [Google Scholar] [CrossRef]
- Iamtrakul, P.; Padon, A.; Klaylee, J. Measuring Spatializing Inequalities of Transport Accessibility and Urban Development Patterns: Focus on Megacity Urbanization, Thailand. J. Reg. City Plan. 2022, 33, 345–366. [Google Scholar] [CrossRef]
Country | Number of Cities | Topic | Satellites Used | Reference |
---|---|---|---|---|
United States of America | 50 | Impact of urban configuration on urban heat islands (UHIs) and identification of the optimal urban form for UHI mitigation. | - | [15] |
China | 245 | Exploring the relationship between urban heat island (UHI) variability and the drivers of urbanization and background climate. | - | [4] |
China | 25 | Examining the relationship between urban heat island (UHI) and meteorological conditions across five climate zones. | - | [16] |
Romania | 12 | Conducting an exploratory analysis on the cooling impact of urban lakes on land surface temperature in Bucharest, Romania, using Landsat imagery. | LANDSAT | [17] |
Spain | 6 | Estimation of daytime hot and cold poles in the Barcelona metropolitan area using Landsat-8 land surface temperature. | LANDSAT, PCA, CA | [18] |
United States of America | 4 | Modeling the intensity of surface heat islands based on variations in biophysical characteristics in Amol City, Iran. | LANDSAT, OBSERVATION | [19] |
Iran | 4 | Conducting an analysis to monitor and forecast heat island intensity using multitemporal image analysis and cellular automata–Markov chain modeling by focusing on Babol City, Iran. | LANDSAT, WEATHER STATION, MODIS | [20] |
China | 10 | Evaluating the spatiotemporal characteristics of urban heat islands: an examination of urban expansion and green infrastructure perspectives. | LANDSAT, MODIS | [21] |
Data Type | Band | Date Acquired | Season | Path/Low | Resolution |
---|---|---|---|---|---|
Landsat 5 TM | TM | 20/01/2000 | Winter | 129/50 and 129/51 | 60 |
Landsat 5 TM | TM | 19/11/2010 | Winter | 60 | |
Landsat 8 | OLI/TIRS | 19/12/2020 | Winter | 30 |
Province | Urban Area Changes (Square Kilometers) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | ||||||||||||||||
Urban Area | % | Green Area | % | Other Area | % | Urban Area | % | Green Area | % | Other Area | % | Urban Area | % | Green Area | % | Other Area | % | |
Bangkok | 408.58 | 35.49 | 1053.78 | 19.02 | 113.41 | 11.53 | 514.26 | 39.17 | 561.14 | 16.86 | 334.94 | 21.86 | 570.82 | 39.07 | 641.21 | 15.88 | 247.54 | 21.11 |
Nakhon Pathom | 108.06 | 9.39 | 1712.83 | 30.91 | 264.98 | 26.94 | 158.29 | 12.06 | 1021.11 | 30.7 | 505.52 | 33 | 199.25 | 13.64 | 1169.06 | 28.97 | 502.38 | 42.83 |
Nonthaburi | 91.58 | 7.95 | 509.59 | 9.2 | 35.99 | 3.66 | 110.9 | 8.45 | 349.37 | 10.5 | 113.23 | 7.39 | 120.16 | 8.22 | 377.46 | 9.35 | 89.21 | 7.61 |
Pathum Thani | 141.59 | 12.3 | 1331.00 | 24.02 | 45.79 | 4.65 | 160.55 | 12.23 | 816.93 | 24.56 | 353.04 | 23.05 | 160.23 | 10.97 | 1084.04 | 26.86 | 199.18 | 16.98 |
Samut Prakan | 249.75 | 21.69 | 448.92 | 8.1 | 280.74 | 28.54 | 249.06 | 18.97 | 182.29 | 5.48 | 162.56 | 10.61 | 250.45 | 17.14 | 361.92 | 8.97 | 86.48 | 7.37 |
Samut Sakhon | 151.85 | 13.19 | 484.81 | 8.75 | 242.72 | 24.68 | 119.92 | 9.13 | 395.75 | 11.9 | 62.6 | 4.09 | 160.29 | 10.97 | 402.23 | 9.97 | 48.08 | 4.1 |
Total | 1151.41 | 100 | 5540.93 | 100.00 | 983.63 | 100.00 | 1312.98 | 100 | 3326.59 | 100 | 1531.89 | 100 | 1433.20 | 100 | 4035.92 | 100 | 1172.87 | 100 |
Province | Urban Growth Level | ||||||
---|---|---|---|---|---|---|---|
High | % | Medium | % | Low | % | Total | |
Bangkok | 718.09 | 53.87 | 358.53 | 19.76 | 493.19 | 10.90 | 1569.81 |
Nakhon Pathom | 1.29 | 0.10 | 549.24 | 30.28 | 1583.16 | 34.99 | 2133.70 |
Nonthaburi | 341.41 | 25.61 | 94.51 | 5.21 | 200.30 | 4.43 | 636.22 |
Pathum Thani | 142.72 | 10.71 | 538.23 | 29.67 | 833.55 | 18.42 | 1514.50 |
Samut Prakan | 0.14 | 0.01 | 271.52 | 14.97 | 676.34 | 14.95 | 948.00 |
Samut Sakhon | 129.32 | 9.70 | 2.11 | 0.12 | 738.42 | 16.32 | 869.84 |
Total | 1332.98 | 100.00 | 1814.14 | 100.00 | 4524.97 | 100.00 | 7672.08 |
Province | Factor | 2000 | 2010 | 2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. | Min. | Av. | S.D. | Max. | Min. | Av. | S.D. | Max. | Min. | Av. | S.D. | ||
Bangkok | TOA | 10.87 | 8.45 | 9.59 | 0.16 | 11.42 | 8.95 | 9.65 | 0.18 | 13.11 | 10.74 | 9.88 | 0.21 |
BT | 33.42 | 17.78 | 27.28 | 1.18 | 35.32 | 21.31 | 26.92 | 1.50 | 35.64 | 23.22 | 26.64 | 1.53 | |
NDVI | 0.66 | −0.65 | 0.56 | 0.18 | 0.56 | −0.67 | 0.59 | 0.27 | 0.46 | −0.65 | 0.52 | 0.16 | |
Pv | 0.99 | 0.11 | 0.82 | 0.11 | 0.99 | 0.08 | 0.89 | 0.10 | 0.99 | 0.06 | 0.82 | 0.12 | |
LSE | 0.99 | 0.97 | 0.97 | 0.00 | 0.99 | 0.97 | 0.98 | 0.00 | 0.99 | 0.97 | 0.97 | 0.00 | |
LST | 30.23 | 20.12 | 26.83 | 1.12 | 32.14 | 21.14 | 30.02 | 1.16 | 33.32 | 25.46 | 28.47 | 1.23 | |
Nakhon Pathom | TOA | 9.52 | 7.95 | 8.81 | 0.11 | 10.14 | 8.23 | 8.85 | 0.10 | 10.87 | 8.71 | 9.59 | 0.20 |
BT | 32.23 | 16.88 | 24.25 | 1.32 | 33.15 | 20.06 | 24.45 | 1.19 | 33.45 | 22.61 | 25.26 | 1.54 | |
NDVI | 0.86 | −0.74 | 0.50 | 0.21 | 0.84 | −0.70 | 0.52 | 0.28 | 0.78 | −0.65 | 0.53 | 0.18 | |
Pv | 0.98 | 0.10 | 0.80 | 0.10 | 0.97 | 0.10 | 0.89 | 0.10 | 0.99 | 0.06 | 0.82 | 0.10 | |
LSE | 0.98 | 0.95 | 0.65 | 0.00 | 0.97 | 0.60 | 0.98 | 0.00 | 0.99 | 0.96 | 0.95 | 0.05 | |
LST | 25.63 | 19.66 | 25.53 | 0.80 | 26.53 | 20.60 | 26.23 | 0.88 | 31.63 | 24.54 | 26.53 | 0.92 | |
Nonthaburi | TOA | 9.41 | 7.82 | 8.66 | 0.13 | 9.88 | 7.61 | 8.65 | 0.13 | 10.65 | 8.44 | 9.36 | 0.22 |
BT | 32.36 | 16.86 | 25.63 | 1.08 | 32.84 | 20.44 | 25.78 | 1.24 | 33.48 | 22.74 | 25.63 | 1.58 | |
NDVI | 0.72 | −0.68 | 0.48 | 0.18 | 0.68 | −0.65 | 0.45 | 0.21 | 0.62 | −0.58 | 0.40 | 0.23 | |
Pv | 0.96 | 0.12 | 0.65 | 0.15 | 0.95 | 0.15 | 0.70 | 0.12 | 0.98 | 0.06 | 0.82 | 0.11 | |
LSE | 0.96 | 0.72 | 0.82 | 0.11 | 0.95 | 0.70 | 0.85 | 0.13 | 0.98 | 0.08 | 0.84 | 0.09 | |
LST | 28.61 | 19.52 | 25.21 | 1.22 | 29.50 | 20.54 | 26.54 | 1.31 | 31.54 | 24.32 | 27.61 | 1.36 | |
Pathum Thani | TOA | 9.88 | 7.95 | 8.81 | 0.11 | 10.32 | 9.15 | 8.76 | 0.16 | 10.87 | 8.92 | 9.84 | 0.22 |
BT | 32.56 | 17.24 | 25.86 | 1.18 | 32.83 | 20.56 | 25.84 | 1.25 | 33.62 | 22.86 | 25.78 | 1.32 | |
NDVI | 0.70 | −0.65 | 0.58 | 0.20 | 0.65 | −0.63 | 0.56 | 0.23 | 0.58 | −0.52 | 0.50 | 0.25 | |
Pv | 0.99 | 0.10 | 0.82 | 0.15 | 0.98 | 0.08 | 0.89 | 0.13 | 0.96 | 0.50 | 0.96 | 0.18 | |
LSE | 0.97 | 0.95 | 0.96 | 0.13 | 0.96 | 0.94 | 0.95 | 0.06 | 0.95 | 0.92 | 0.96 | 0.09 | |
LST | 28.82 | 20.56 | 26.44 | 1.24 | 29.50 | 20.86 | 26.52 | 1.33 | 32.45 | 24.82 | 27.61 | 1.38 | |
Samut Prakan | TOA | 9.92 | 7.88 | 8.95 | 0.15 | 10.44 | 9.56 | 8.43 | 0.18 | 11.17 | 9.43 | 9.92 | 0.18 |
BT | 33.12 | 17.43 | 26.54 | 1.19 | 34.27 | 21.09 | 26.40 | 1.24 | 34.65 | 23.12 | 26.29 | 1.36 | |
NDVI | 0.68 | −0.67 | 0.60 | 0.21 | 0.64 | −0.60 | 0.58 | 0.23 | 0.58 | −0.62 | 0.56 | 0.25 | |
Pv | 0.98 | 0.09 | 0.92 | 0.12 | 0.97 | 0.10 | 0.90 | 0.13 | 0.96 | 0.15 | 0.89 | 0.16 | |
LSE | 0.96 | 0.94 | 0.95 | 0.18 | 0.97 | 0.95 | 0.95 | 0.15 | 0.96 | 0.94 | 0.95 | 0.12 | |
LST | 29.22 | 20.66 | 26.51 | 1.26 | 30.21 | 21.04 | 27.21 | 1.42 | 32.62 | 24.62 | 27.51 | 1.45 | |
Samut Sakhon | TOA | 9.78 | 7.61 | 8.26 | 0.12 | 10.08 | 8.48 | 9.63 | 0.18 | 10.62 | 8.65 | 9.43 | 0.21 |
BT | 32.78 | 17.18 | 25.62 | 1.18 | 35.28 | 21.31 | 26.92 | 1.50 | 35.45 | 23.61 | 26.81 | 1.54 | |
NDVI | 0.67 | −0.58 | 0.59 | 0.16 | 0.65 | −0.55 | 0.62 | 0.18 | 0.60 | −0.52 | 0.55 | 0.21 | |
Pv | 0.99 | 0.10 | 0.90 | 0.15 | 0.98 | 0.08 | 0.92 | 0.10 | 0.99 | 0.06 | 0.82 | 0.12 | |
LSE | 0.98 | 0.94 | 0.90 | 0.15 | 0.98 | 0.96 | 0.97 | 0.15 | 0.99 | 0.97 | 0.92 | 0.13 | |
LST | 28.14 | 20.23 | 26.43 | 1.06 | 27.55 | 20.92 | 26.85 | 1.12 | 32.55 | 24.60 | 26.43 | 1.18 |
Surface Temperature (LST)/Year | Yearly (Celsius) | Change (Percent) | ||||
---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
Max. | 30 | 32 | 33 | +0.03 | −0.02 | +0.01 |
Min. | 11 | 13 | 15 | +0.01 | −0.015 | +0.02 |
Average | 17.84 | 18.43 | 20.93 | −0.01 | −0.02 | −0.03 |
S.D. | 1.12 | 1.18 | 1.24 | −0.001 | −0.002 | −0.003 |
Province | 2000 | 2010 | 2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Average | S.D. | Min. | Max. | Average | S.D. | Min. | Max. | Average | S.D. | |
Bangkok | 20.12 | 30.23 | 26.83 | 1.12 | 21.14 | 32.14 | 27.56 | 1.16 | 25.46 | 33.32 | 28.47 | 1.23 |
Nakhon Pathom | 19.66 | 25.63 | 25.53 | 0.8 | 20.6 | 26.53 | 26.23 | 0.88 | 24.54 | 31.63 | 26.53 | 0.92 |
Nonthaburi | 19.52 | 28.61 | 25.21 | 1.22 | 20.54 | 29.5 | 26.54 | 1.31 | 24.32 | 31.54 | 27.61 | 1.36 |
Pathum Thani | 20.56 | 28.82 | 26.44 | 1.24 | 20.86 | 29.5 | 26.52 | 1.33 | 24.82 | 32.45 | 27.61 | 1.38 |
Samut Prakan | 20.66 | 29.22 | 26.51 | 1.26 | 21.04 | 30.21 | 27.21 | 1.42 | 24.62 | 32.62 | 27.51 | 1.45 |
Samut Sakhon | 20.23 | 28.14 | 26.43 | 1.06 | 20.92 | 27.55 | 26.85 | 1.12 | 24.6 | 32.55 | 26.43 | 1.18 |
Urban Level (sq. km) | Temperature Level (Degrees Celsius) | |||||||
---|---|---|---|---|---|---|---|---|
High | ||||||||
Area (Sq. km.) | Grid | % | Max. | Min. | Av. | S.D. | Sig. | |
High | 924.83 | 1020 | 61.82 | 31.07 | 26 | 27.14 | 0.85 | 0.000 |
Medium | 551.04 | 626 | 36.83 | 25.97 | 24 | 25.25 | 0.42 | 0.000 |
Low | 20.16 | 23 | 1.35 | 23.97 | 20.62 | 23.14 | 0.84 | 0.000 |
Total | 1496.03 | 1669 | 100 | |||||
Medium | ||||||||
High | 305.28 | 570 | 36.43 | 30.38 | 26 | 26.86 | 0.64 | 0.000 |
Medium | 502.45 | 972 | 59.96 | 25.97 | 24 | 25.19 | 0.46 | 0.000 |
Low | 30.27 | 62 | 3.61 | 23.97 | 21.62 | 23.23 | 0.64 | 0.001 |
Total | 838 | 1604 | 100 | |||||
Low | ||||||||
High | 146.95 | 1018 | 25.64 | 29.23 | 26 | 27.04 | 0.71 | 0.000 |
Medium | 379.22 | 2967 | 66.15 | 25.98 | 24 | 25.13 | 0.53 | 0.000 |
Low | 47.06 | 723 | 8.21 | 23.96 | 19.71 | 22.93 | 0.85 | 0.001 |
Total | 573.23 | 4708 | 100 |
Level | Urban Area (Number of Grids) | |||
---|---|---|---|---|
High | Medium | Low | ||
Temperature (degrees Celsius) | High | 677 grids y = −0.0033x + 27.165 R2 = 0.8582 | 680 grids y = −0.0019x + 26.667 R2 = 0.1712 | 380 grids y = −0.0001x + 26.24 R2 = 0.0004 |
Medium | 632 grids y = −0.0036x + 27.177 R2 = 0.2727 | 426 grids y = −0.0005x + 25.746 R2 = 0.0079 | 363 grids y = −0.0044x + 26.222 R2 = 0.1567 | |
Low | 217 grids y = −0.0139x + 26.172 R2 = 0.471 | 1820 grids y = −4 × 10−6x2 + 0.0052x + 24.831 R2 = 0.6129 | 2795 grids y = −6 × 10−7x2 + 0.0012x + 24.768 R2 = 0.7404 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iamtrakul, P.; Padon, A.; Chayphong, S. Quantifying the Impact of Urban Growth on Urban Surface Heat Islands in the Bangkok Metropolitan Region, Thailand. Atmosphere 2024, 15, 100. https://doi.org/10.3390/atmos15010100
Iamtrakul P, Padon A, Chayphong S. Quantifying the Impact of Urban Growth on Urban Surface Heat Islands in the Bangkok Metropolitan Region, Thailand. Atmosphere. 2024; 15(1):100. https://doi.org/10.3390/atmos15010100
Chicago/Turabian StyleIamtrakul, Pawinee, Apinya Padon, and Sararad Chayphong. 2024. "Quantifying the Impact of Urban Growth on Urban Surface Heat Islands in the Bangkok Metropolitan Region, Thailand" Atmosphere 15, no. 1: 100. https://doi.org/10.3390/atmos15010100
APA StyleIamtrakul, P., Padon, A., & Chayphong, S. (2024). Quantifying the Impact of Urban Growth on Urban Surface Heat Islands in the Bangkok Metropolitan Region, Thailand. Atmosphere, 15(1), 100. https://doi.org/10.3390/atmos15010100