A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models
Abstract
:1. Introduction to Groundwater Modelling
2. Climate Change and Groundwater Interactions
3. Key Modelling Approaches
4. Advancement in Hydrological Modelling Technologies
5. Spatial and Temporal Consideration and Assumptions in Modelling Groundwater Susceptibility
6. Selectivity and Sensitivity Indicators for Climate Vulnerability of Groundwater
7. Hybrid Model for Vulnerability Assessment of Groundwater and Its Challenges
7.1. Advantages and Limitations of the Hybrid Study
7.1.1. Sea Level Rise and Its Attributes
7.1.2. Topography Factors’ Inclusion
7.1.3. Heterogenous Aquifer Properties
7.1.4. Groundwater Contamination and Rainfall Recharge Process Optimisation
8. Artificial Intelligence and Quantum Computing
9. Implications for Sustainable Water Resource Management (Policy Considerations)
10. Summary and Future Perspectives
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du Plessis, A. Freshwater Challenges of South Africa and Its Upper Vaal River; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 3319495011. [Google Scholar]
- López-Morales, C.A.; Mesa-Jurado, M.A. Valuation of Hidden Water Ecosystem Services: The Replacement Cost of the Aquifer System in Central Mexico. Water 2017, 9, 571. [Google Scholar] [CrossRef]
- Misra, A.K. Climate Change and Challenges of Water and Food Security. Int. J. Sustain. Built Environ. 2014, 3, 153–165. [Google Scholar] [CrossRef]
- Velis, M.; Conti, K.I.; Biermann, F. Groundwater and Human Development: Synergies and Trade-Offs within the Context of the Sustainable Development Goals. Sustain. Sci. 2017, 12, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Liesch, T.; Wunsch, A. Aquifer Responses to Long-Term Climatic Periodicities. J. Hydrol. 2019, 572, 226–242. [Google Scholar] [CrossRef]
- Munday, P.L.; Donelson, J.M.; Domingos, J.A. Potential for Adaptation to Climate Change in a Coral Reef Fish. Glob. Chang. Biol. 2017, 23, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Asoka, A.; Gleeson, T.; Wada, Y.; Mishra, V. Relative Contribution of Monsoon Precipitation and Pumping to Changes in Groundwater Storage in India. Nat. Geosci. 2017, 10, 109–117. [Google Scholar] [CrossRef]
- de Graaf, I.E.M.; van Beek, R.L.P.H.; Gleeson, T.; Moosdorf, N.; Schmitz, O.; Sutanudjaja, E.H.; Bierkens, M.F.P. A Global-Scale Two-Layer Transient Groundwater Model: Development and Application to Groundwater Depletion. Adv. Water Resour. 2017, 102, 53–67. [Google Scholar] [CrossRef]
- Russo, T.A.; Lall, U. Depletion and Response of Deep Groundwater to Climate-Induced Pumping Variability. Nat. Geosci. 2017, 10, 105–108. [Google Scholar] [CrossRef]
- Sivarajan, N.A.; Mishra, A.K.; Rafiq, M.; Nagraju, V.; Chandra, S. Examining Climate Change Impact on the Variability of Ground Water Level: A Case Study of Ahmednagar District, India. J. Earth Syst. Sci. 2019, 128, 122. [Google Scholar] [CrossRef]
- van der Knaap, Y.A.M.; de Graaf, M.; van Ek, R.; Witte, J.-P.M.; Aerts, R.; Bierkens, M.F.P.; van Bodegom, P.M. Potential Impacts of Groundwater Conservation Measures on Catchment-Wide Vegetation Patterns in a Future Climate. Landsc. Ecol. 2015, 30, 855–869. [Google Scholar] [CrossRef]
- van Engelenburg, J.; Hueting, R.; Rijpkema, S.; Teuling, A.J.; Uijlenhoet, R.; Ludwig, F. Impact of Changes in Groundwater Extractions and Climate Change on Groundwater-Dependent Ecosystems in a Complex Hydrogeological Setting. Water Resour. Manag. 2018, 32, 259–272. [Google Scholar] [CrossRef]
- Gamvroudis, C.; Dokou, Z.; Nikolaidis, N.P.; Karatzas, G.P. Impacts of Surface and Groundwater Variability Response to Future Climate Change Scenarios in a Large Mediterranean Watershed. Environ. Earth Sci. 2017, 76, 385. [Google Scholar] [CrossRef]
- Mustafa, I. Methylene Blue Removal from Water Using H2SO4 Crosslinked Magnetic Chitosan Nanocomposite Beads. Microchem. J. 2019, 144, 397–402. [Google Scholar]
- da Costa, A.M.; de Salis, H.H.C.; Viana, J.H.M.; Leal Pacheco, F.A. Groundwater Recharge Potential for Sustainable Water Use in Urban Areas of the Jequitiba River Basin, Brazil. Sustainability 2019, 11, 2955. [Google Scholar] [CrossRef]
- Alam, S.; Gebremichael, M.; Li, R.; Dozier, J.; Lettenmaier, D.P. Climate Change Impacts on Groundwater Storage in the Central Valley, California. Clim. Chang. 2019, 157, 387–406. [Google Scholar] [CrossRef]
- Weissinger, R.; Philippi, T.E.; Thoma, D. Linking Climate to Changing Discharge at Springs in Arches National Park, Utah, USA. Ecosphere 2016, 7, e01491. [Google Scholar] [CrossRef]
- Tambe, S.; Kharel, G.; Arrawatia, M.L.; Kulkarni, H.; Mahamuni, K.; Ganeriwala, A.K. Reviving Dying Springs: Climate Change Adaptation Experiments from the Sikkim Himalaya. Mt. Res. Dev. 2012, 32, 62–72. [Google Scholar] [CrossRef]
- Zhong, Y.; Hao, Y.; Huo, X.; Zhang, M.; Duan, Q.; Fan, Y.; Liu, Y.; Liu, Y.; Yeh, T.J. A Statistical Model for Karst Spring Discharge Estimation under Extensive Groundwater Development and Extreme Climate Change. Hydrol. Sci. J. 2016, 61, 2011–2023. [Google Scholar] [CrossRef]
- Solder, J.E.; Stolp, B.J.; Heilweil, V.M.; Susong, D.D. Characterization of Mean Transit Time at Large Springs in the Upper Colorado River Basin, USA: A Tool for Assessing Groundwater Discharge Vulnerability. Hydrogeol. J. 2016, 24, 2017. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; MacQuarrie, K.T.B.; Caissie, D.; McKenzie, J.M. Shallow Groundwater Thermal Sensitivity to Climate Change and Land Cover Disturbances: Derivation of Analytical Expressions and Implications for Stream Temperature Modeling. Hydrol. Earth Syst. Sci. 2015, 19, 2469–2489. [Google Scholar] [CrossRef]
- Amanambu, A.C.; Obarein, O.A.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Oyebamiji, A.; Ochege, F.U. Groundwater System and Climate Change: Present Status and Future Considerations. J. Hydrol. 2020, 589, 125163. [Google Scholar] [CrossRef]
- Fu, G.; Crosbie, R.S.; Barron, O.; Charles, S.P.; Dawes, W.; Shi, X.; Van Niel, T.; Li, C. Attributing Variations of Temporal and Spatial Groundwater Recharge: A Statistical Analysis of Climatic and Non-Climatic Factors. J. Hydrol. 2019, 568, 816–834. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P. Climate Change Impacts on Groundwater and Dependent Ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Leite, M.B.; Mattos, T.; Nearing, M.A.; Scott, R.L.; de Oliveira Xavier, R.; da Silva Matos, D.M.; Wendland, E. Groundwater Recharge Decrease with Increased Vegetation Density in the Brazilian Cerrado. Ecohydrology 2017, 10, e1759. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater Recharge Rates and Surface Runoff Response to Land Use and Land Cover Changes in Semi-Arid Environments. Ecol. Process. 2016, 5, 16. [Google Scholar] [CrossRef]
- Kundu, S.; Khare, D.; Mondal, A. Past, Present and Future Land Use Changes and Their Impact on Water Balance. J. Environ. Manag. 2017, 197, 582–596. [Google Scholar] [CrossRef]
- Merz, C.; Lischeid, G. Multivariate Analysis to Assess the Impact of Irrigation on Groundwater Quality. Environ. Earth Sci. 2019, 78, 274. [Google Scholar] [CrossRef]
- McGill, B.M.; Altchenko, Y.; Hamilton, S.K.; Kenabatho, P.K.; Sylvester, S.R.; Villholth, K.G. Complex Interactions between Climate Change, Sanitation, and Groundwater Quality: A Case Study from Ramotswa, Botswana. Hydrogeol. J. 2019, 27, 997–1015. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Peña-Haro, S.; García-Prats, A.; Mocholi-Almudever, A.F.; Henríquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A. Integrated Assessment of the Impact of Climate and Land Use Changes on Groundwater Quantity and Quality in the Mancha Oriental System (Spain). Hydrol. Earth Syst. Sci. 2015, 19, 1677–1693. [Google Scholar] [CrossRef]
- Romanazzi, A.; Gentile, F.; Polemio, M. Modeling and Management of a Mediterranean Karstic Coastal Aquifer under the Effects of Seawater Intrusion and Climate Change. Environ. Earth Sci. 2015, 74, 115–128. [Google Scholar] [CrossRef]
- Knott, J.F.; Jacobs, J.M.; Daniel, J.S.; Kirshen, P. Modeling Groundwater Rise Caused by Sea-Level Rise in Coastal New Hampshire. J. Coast. Res. 2019, 35, 143–157. [Google Scholar]
- Dong, Y.; Jiang, C.; Suri, M.R.; Pee, D.; Meng, L.; Goldstein, R.E.R. Groundwater Level Changes with a Focus on Agricultural Areas in the Mid-Atlantic Region of the United States, 2002–2016. Environ. Res. 2019, 171, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Kambale, J.B.; Singh, D.K.; Sarangi, A. Impact of Climate Change on Groundwater Recharge in a Semi-Arid Region of Northern India. Appl. Ecol. Environ. Res. 2017, 15, 335–362. [Google Scholar] [CrossRef]
- Brauman, K.A.; Richter, B.D.; Postel, S.; Malsy, M.; Flörke, M. Water Depletion: An Improved Metric for Incorporating Seasonal and Dry-Year Water Scarcity into Water Risk Assessments. Elementa 2016, 4, 83. [Google Scholar] [CrossRef]
- Tosi, L.; Strozzi, T.; Da Lio, C.; Teatini, P. Regional and Local Land Subsidence at the Venice Coastland by TerraSAR-X PSI. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 199–205. [Google Scholar] [CrossRef]
- Zhu, L.; Gong, H.; Li, X.; Wang, R.; Chen, B.; Dai, Z.; Teatini, P. Land Subsidence Due to Groundwater Withdrawal in the Northern Beijing Plain, China. Eng. Geol. 2015, 193, 243–255. [Google Scholar] [CrossRef]
- Ghazifard, A.; Moslehi, A.; Safaei, H.; Roostaei, M. Effects of Groundwater Withdrawal on Land Subsidence in Kashan Plain, Iran. Bull. Eng. Geol. Environ. 2016, 75, 1157–1168. [Google Scholar] [CrossRef]
- Faunt, C.C.; Sneed, M.; Traum, J.; Brandt, J.T. Water Availability and Land Subsidence in the Central Valley, California, USA. Hydrogeol. J. 2016, 24, 675. [Google Scholar] [CrossRef]
- Li, R.; Merchant, J.W. Modeling Vulnerability of Groundwater to Pollution under Future Scenarios of Climate Change and Biofuels-Related Land Use Change: A Case Study in North Dakota, USA. Sci. Total Environ. 2013, 447, 32–45. [Google Scholar] [CrossRef]
- Luoma, S.; Okkonen, J.; Korkka-Niemi, K. Comparison of the AVI, Modified SINTACS and GALDIT Vulnerability Methods under Future Climate-Change Scenarios for a Shallow Low-Lying Coastal Aquifer in Southern Finland. Hydrogeol. J. 2017, 25, 203–222. [Google Scholar] [CrossRef]
- Seeboonruang, U. Impact Assessment of Climate Change on Groundwater and Vulnerability to Drought of Areas in Eastern Thailand. Environ. Earth Sci. 2016, 75, 42. [Google Scholar] [CrossRef]
- Chang, S.W.; Nemec, K.; Kalin, L.; Clement, T.P. Impacts of Climate Change and Urbanization on Groundwater Resources in a Barrier Island. J. Environ. Eng. 2016, 142, D4016001. [Google Scholar] [CrossRef]
- De Sherbinin, A.; Bukvic, A.; Rohat, G.; Gall, M.; McCusker, B.; Preston, B.; Apotsos, A.; Fish, C.; Kienberger, S.; Muhonda, P. Climate Vulnerability Mapping: A Systematic Review and Future Prospects. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, e600. [Google Scholar] [CrossRef]
- Leterme, B.; Mallants, D. Climate and Land Use Change Impacts on Groundwater Recharge. Proc. Model CARE 2011, 355, 313–319. [Google Scholar]
- Scibek, J.; Allen, D.M. Modeled Impacts of Predicted Climate Change on Recharge and Groundwater Levels. Water Resour. Res. 2006, 42, 1–18. [Google Scholar] [CrossRef]
- Toews, M.W.; Allen, D.M. Simulated Response of Groundwater to Predicted Recharge in a Semi-Arid Region Using a Scenario of Modelled Climate Change. Environ. Res. Lett. 2009, 4, 35003. [Google Scholar] [CrossRef]
- Soltani, F.; Javadi, S.; Roozbahani, A.; Massah Bavani, A.R.; Golmohammadi, G.; Berndtsson, R.; Ghordoyee Milan, S.; Maghsoudi, R. Assessing Climate Change Impact on Water Balance Components Using Integrated Groundwater—Surface Water Models (Case Study: Shazand Plain, Iran). Water 2023, 15, 813. [Google Scholar] [CrossRef]
- Sarkar, S.; Mukherjee, A.; Senapati, B.; Duttagupta, S. Predicting Potential Climate Change Impacts on Groundwater Nitrate Pollution and Risk in an Intensely Cultivated Area of South Asia. ACS Environ. Au 2022, 2, 556–576. [Google Scholar] [CrossRef]
- Herrera-Pantoja, M.; Hiscock, K.M. The Effects of Climate Change on Potential Groundwater Recharge in Great Britain. Hydrol. Process. Int. J. 2008, 22, 73–86. [Google Scholar] [CrossRef]
- Mizyed, N. Climate Change Challenges to Groundwater Resources: Palestine as a Case Study. J. Water Resour. Prot. 2018, 10, 215–229. [Google Scholar] [CrossRef]
- Kalugin, A.S. The Impact of Climate Change on Surface, Subsurface, and Groundwater Flow: A Case Study of the Oka River (European Russia). Water Resour. 2019, 46, S31–S39. [Google Scholar] [CrossRef]
- Soundala, P.; Saraphirom, P. Impact of Climate Change on Groundwater Recharge and Salinity Distribution in the Vientiane Basin, Lao PDR. J. Water Clim. Chang. 2022, 13, 3812–3829. [Google Scholar] [CrossRef]
- Ghazavi, R.; Ebrahimi, H. Predicting the Impacts of Climate Change on Groundwater Recharge in an Arid Environment Using Modeling Approach. Int. J. Clim. Chang. Strateg. Manag. 2018, 11, 88–99. [Google Scholar] [CrossRef]
- Joshi, N.; Rahaman, M.M.; Thakur, B.; Shrestha, A.; Kalra, A.; Gupta, R. Assessing the effects of climate variability on groundwater in Northern India. In Proceedings of the World Environmental and Water Resources Congress 2020, Henderson, Nevada, 17–21 May 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 41–52. [Google Scholar]
- Olarinoye, T.; Foppen, J.W.; Veerbeek, W.; Morienyane, T.; Komakech, H. Exploring the Future Impacts of Urbanization and Climate Change on Groundwater in Arusha, Tanzania. In Groundwater; Routledge: Abingdon, UK, 2023; pp. 79–93. [Google Scholar]
- Yang, J.-S.; Jeong, Y.-W.; Agossou, A.; Sohn, J.-S.; Lee, J.-B. GALDIT Modification for Seasonal Seawater Intrusion Mapping Using Multi Criteria Decision Making Methods. Water 2022, 14, 2258. [Google Scholar] [CrossRef]
- Ghosh, R.; Sutradhar, S.; Mondal, P.; Das, N. Application of DRASTIC Model for Assessing Groundwater Vulnerability: A Study on Birbhum District, West Bengal, India. Model. Earth Syst. Environ. 2021, 7, 1225–1239. [Google Scholar] [CrossRef]
- Rukmana, B.T.S.; Bargawa, W.S.; Cahyadi, T.A. Assessment of Groundwater Vulnerability Using GOD Method. IOP Conf. Ser. Earth Environ. Sci. 2020, 477, 012020. [Google Scholar] [CrossRef]
- Ducci, D.; Sellerino, M. A Modified AVI Model for Groundwater Vulnerability Mapping: Case Studies in Southern Italy. Water 2022, 14, 248. [Google Scholar] [CrossRef]
- Waikar, M.L.; Somwanshi, M.A. Data Preparation For Assessing Impact Of Climate Change On Groundwater Recharge. Int. J. Innov. Res. Adv. Eng. 2014, 1, 15–21. [Google Scholar]
- Manish, K.; Telwala, Y.; Nautiyal, D.C.; Pandit, M.K. Modeling the Impacts of Future Climate Change on Plant Communities in the Himalaya: A Case Study from Eastern Himalaya, India. Model. Earth Syst. Environ. 2016, 2, 92. [Google Scholar] [CrossRef]
- Crosbie, R.S.; Scanlon, B.R.; Mpelasoka, F.S.; Reedy, R.C.; Gates, J.B.; Zhang, L. Potential Climate Change Effects on Groundwater Recharge in the High Plains Aquifer, USA. Water Resour. Res. 2013, 49, 3936–3951. [Google Scholar] [CrossRef]
- Nyenje, P.M.; Batelaan, O. Estimating the Effects of Climate Change on Groundwater Recharge and Baseflow in the Upper Ssezibwa Catchment, Uganda. Hydrol. Sci. J. 2009, 54, 713–726. [Google Scholar] [CrossRef]
- Niu, G.; Yang, Z.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The Community Noah Land Surface Model with Multiparameterization Options (Noah-MP): 1. Model Description and Evaluation with Local-scale Measurements. J. Geophys. Res. Atmos. 2011, 116, 1–19. [Google Scholar] [CrossRef]
- Banda, V.D.; Dzwairo, R.B.; Singh, S.K.; Kanyerere, T. Hydrological Modeling and Climate Adaptation under Changing Climate: A Review with a Focus in Sub-Saharan Africa. Water 2022, 14, 4031. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U. A Decade of Predictions in Ungauged Basins (PUB)—A Review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity Is Dead: Whither Water Management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.P.; Fan, Y.; Lawrence, D.M.; Adam, J.C.; Bolster, D.; Gochis, D.J.; Hooper, R.P.; Kumar, M.; Leung, L.R.; Mackay, D.S. Improving the Representation of Hydrologic Processes in Earth System Models. Water Resour. Res. 2015, 51, 5929–5956. [Google Scholar] [CrossRef]
- Moges, E.; Demissie, Y.; Larsen, L.; Yassin, F. Sources of Hydrological Model Uncertainties and Advances in Their Analysis. Water 2021, 13, 28. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 741–866. [Google Scholar]
- Swenson, S.C.; Lawrence, D.M. Assessing a Dry Surface Layer-based Soil Resistance Parameterization for the Community Land Model Using GRACE and FLUXNET-MTE Data. J. Geophys. Res. Atmos. 2014, 119, 10–299. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Verburg, P.H.; Erb, K.-H.; Mertz, O.; Espindola, G. Land System Science: Between Global Challenges and Local Realities. Curr. Opin. Environ. Sustain. 2013, 5, 433–437. [Google Scholar] [CrossRef]
- Dembélé, M.; Salvadore, E.; Zwart, S.; Ceperley, N.; Mariéthoz, G.; Schaefli, B. Water Accounting under Climate Change in the Transboundary Volta River Basin with a Spatially Calibrated Hydrological Model. J. Hydrol. 2023, 626, 130092. [Google Scholar] [CrossRef]
- Swain, S.; Taloor, A.K.; Dhal, L.; Sahoo, S.; Al-Ansari, N. Impact of Climate Change on Groundwater Hydrology: A Comprehensive Review and Current Status of the Indian Hydrogeology. Appl. Water Sci. 2022, 12, 120. [Google Scholar] [CrossRef]
- Crosbie, R.S.; McCallum, J.L.; Walker, G.R.; Chiew, F.H.S. Modeling Climate-Change Impacts on Groundwater Recharge in the Murray-Darling Basin, Australia. Hydrogeol. J. 2010, 18, 1639–1656. [Google Scholar] [CrossRef]
- Aslam, R.A.; Shrestha, S.; Pandey, V.P. Groundwater Vulnerability to Climate Change: A Review of the Assessment Methodology. Sci. Total Environ. 2018, 612, 853–875. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Hou, D.; Wang, L.; O’Connor, D.; Luo, J. The development of groundwater research in the past 40 years: A burgeoning trend in groundwater depletion and sustainable management. J. Hydrol. 2020, 587, 125006. [Google Scholar] [CrossRef]
- Forero-Ortiz, E.; Martínez-Gomariz, E.; Monjo, R. Climate Change Implications for Water Availability: A Case Study of Barcelona City. Sustainability 2020, 12, 1779. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Chatterjee, U. Chapter 15—Ground Water Depletion and Climate Change: Role of Geospatial Technology for a Mitigation Strategy. In Climate Change, Community Response and Resilience; Chatterjee, U., Shaw, R., Bhunia, G.S., Setiawati, M.D., Banerjee, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 6, pp. 291–304. ISBN 978-0-443-18707-0. [Google Scholar]
- Goderniaux, P.; Brouyére, S.; Blenkinsop, S.; Burton, A.; Fowler, H.J.; Orban, P.; Dassargues, A. Modeling Climate Change Impacts on Groundwater Resources Using Transient Stochastic Climatic Scenarios. Water Resour. Res. 2011, 47, 1–17. [Google Scholar] [CrossRef]
- Tootoonchi, F.; Todorović, A.; Grabs, T.; Teutschbein, C. Uni- and Multivariate Bias Adjustment of Climate Model Simulations in Nordic Catchments: Effects on Hydrological Signatures Relevant for Water Resources Management in a Changing Climate. J. Hydrol. 2023, 623, 129807. [Google Scholar] [CrossRef]
- Di Salvo, C. Groundwater Hydrological Model Simulation. Water 2023, 15, 822. [Google Scholar] [CrossRef]
- Reinecke, R.; Müller Schmied, H.; Trautmann, T.; Seaby Andersen, L.; Burek, P.; Flörke, M.; Gosling, S.N.; Grillakis, M.; Hanasaki, N.; Koutroulis, A.; et al. Uncertainty of Simulated Groundwater Recharge at Different Global Warming Levels: A Global-Scale Multi-Model Ensemble Study. Hydrol. Earth Syst. Sci. 2021, 25, 787–810. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Shukla, P.R.; Skea, J.; Slade, R.; Al Khourdajie, A.; van Diemen, R.; McCollum, D.; Pathak, M.; Some, S.; Vyas, P.; Fradera, R.; et al. (Eds.) IPCC Summary for Policymakers Sixth Assessment Report (WG3). In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; ISBN 9781107415416. [Google Scholar]
- Benini, L.; Antonellini, M.; Laghi, M.; Mollema, P.N. Assessment of Water Resources Availability and Groundwater Salinization in Future Climate and Land Use Change Scenarios: A Case Study from a Coastal Drainage Basin in Italy. Water Resour. Manag. 2016, 30, 731–745. [Google Scholar] [CrossRef]
- Giordano, M. Global Groundwater? Issues and Solutions. Annu. Rev. Environ. Resour. 2009, 34, 153–178. [Google Scholar] [CrossRef]
- Mc, M. Climate Change Impacts on Groundwater: Literature Review. Environ. Risk Assess. Remediat. 2017, 2, 16. [Google Scholar] [CrossRef]
- Lal, M.; Sau, B.L.; Patidar, J.; Patidar, A. Climate Change and Groundwater: Impact, Adaptation and Sustainable. Int. J. Bio-Resour. Stress Manag. 2018, 9, 408–415. [Google Scholar] [CrossRef]
- Zume, J.T.; Tarhule, A.A. Modeling the Response of an Alluvial Aquifer to Anthropogenic and Recharge Stresses in the United States Southern Great Plains. J. Earth Syst. Sci. 2011, 120, 557–572. [Google Scholar] [CrossRef]
- Shah, T.; Molden, D.; Sakthivadivel, R.; Seckler, D. The Global Groundwater Situation: Overview of Opportunities and Challenges; International Water Management Institute: Colombo, Sri Lanka, 2000. [Google Scholar]
- Kenda, K.; Čerin, M.; Bogataj, M.; Senožetnik, M.; Klemen, K.; Pergar, P.; Laspidou, C.; Mladenić, D. Groundwater Modeling with Machine Learning Techniques: Ljubljana polje Aquifer. Proceedings 2018, 2, 697. [Google Scholar]
- Riedel, T. Temperature-Associated Changes in Groundwater Quality. J. Hydrol. 2019, 572, 206–212. [Google Scholar] [CrossRef]
- McNeill, V.F. Atmospheric Aerosols: Clouds, Chemistry, and Climate. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 427–444. [Google Scholar] [CrossRef]
- de Vries, F.W.T.P. Rice Production and Climate Change. In Systems Approaches for Agricultural Development: Proceedings of the International Symposium on Systems Approaches for Agricultural Development, Bangkok, Thailand, 2–6 December 1991; de Vries, F.P., Teng, P., Metselaar, K., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 1993; pp. 175–189. ISBN 978-94-011-2842-1. [Google Scholar]
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands, Carbon, and Climate Change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Lavell, A.; Oppenheimer, M.; Diop, C.; Hess, J.; Lempert, R.; Li, J.; Muir-Wood, R.; Myeong, S.; Moser, S.; Takeuchi, K. Climate Change: New Dimensions in Disaster Risk, Exposure, Vulnerability, and Resilience. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; pp. 25–64. [Google Scholar]
- Earman, S.; Dettinger, M. Potential Impacts of Climate Change on Groundwater Resources—A Global Review. J. Water Clim. Chang. 2011, 2, 213–229. [Google Scholar] [CrossRef]
- Gitz, V.; Meybeck, A.; Lipper, L.; De Young, C.; Braatz, S. Climate Change and Food Security: Risks and Responses. In Food and Agriculture Organization of the United Nations (FAO) Report; FAO: Rome, Italy, 2016; Volume 110. [Google Scholar]
- Wallace, L.; Sundaram, B.; Ross, S.; Brodie, M.S.; Dawson, S.; Jaycock, J.; Stewart, G.; Furness, L. Vulnerability Assessment of Climate Change Impact on Groundwater Resources in Timor Leste. In Australia Government Department of Climate Change and Energy Efficiency; Geoscience Australia: Canberra, Australia, 2012; Volume 55. [Google Scholar]
- Chattopadhyay, P.B.; Singh, V.S. Hydrochemical Evidences: Vulnerability of Atoll Aquifers in Western Indian Ocean to Climate Change. Glob. Planet Chang. 2013, 106, 123–140. [Google Scholar] [CrossRef]
- Gosling, S.N.; Taylor, R.G.; Arnell, N.W.; Todd, M.C. A Comparative Analysis of Projected Impacts of Climate Change on River Runoff from Global and Catchment-Scale Hydrological Models. Hydrol. Earth Syst. Sci. 2011, 15, 279–294. [Google Scholar] [CrossRef]
- Patle, G.T.; Singh, D.K.; Sarangi, A.; Sahoo, R.N. Modeling of Groundwater Recharge Potential from Irrigated Paddy Field under Changing Climate. Paddy Water Environ. 2017, 15, 413–423. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Shukla, S.; Wani, S.P.; Graham, W.D.; Jones, J.W. Future Irrigation Expansion Outweigh Groundwater Recharge Gains from Climate Change in Semi-Arid India. Sci. Total Environ. 2018, 635, 725–740. [Google Scholar] [CrossRef]
- Dangar, S.; Asoka, A.; Mishra, V. Causes and Implications of Groundwater Depletion in India: A Review. J. Hydrol. 2021, 596, 126103. [Google Scholar] [CrossRef]
- Ferrant, S.; Caballero, Y.; Perrin, J.; Gascoin, S.; Dewandel, B.; Aulong, S.; Dazin, F.; Ahmed, S.; Maréchal, J.C. Projected Impacts of Climate Change on Farmers’ Extraction of Groundwater from Crystalline Aquifers in South India. Sci. Rep. 2014, 4, 3697. [Google Scholar] [CrossRef]
- Nayak, S.K.; Nandimandalam, J.R. Impacts of Climate Change and Coastal Salinization on the Environmental Risk of Heavy Metal Contamination along the Odisha Coast, India. Environ. Res. 2023, 238, 117175. [Google Scholar] [CrossRef]
- Wojkowski, J.; Wałęga, A.; Młyński, D.; Radecki-Pawlik, A.; Lepeška, T.; Piniewski, M.; Kundzewicz, Z.W. Are We Losing Water Storage Capacity Mostly Due to Climate Change—Analysis of the Landscape Hydric Potential in Selected Catchments in East-Central Europe. Ecol. Indic. 2023, 154, 110913. [Google Scholar] [CrossRef]
- Bennour, A.; Jia, L.; Menenti, M.; Zheng, C.; Zeng, Y.; Barnieh, B.A.; Jiang, M. Assessing Impacts of Climate Variability and Land Use/Land Cover Change on the Water Balance Components in the Sahel Using Earth Observations and Hydrological Modeling. J. Hydrol. Reg. Stud. 2023, 47, 101370. [Google Scholar] [CrossRef]
- Anurag, H.; Ng, G.H.C. Assessing future climate change impacts on groundwater recharge in Minnesota. J. Hydrol. 2022, 612, 128112. [Google Scholar] [CrossRef]
- Adhikari, R.K.; Yilmaz, A.G.; Mainali, B.; Dyson, P.; Imteaz, M.A. Methods of Groundwater Recharge Estimation under Climate Change: A Review. Sustainability 2022, 14, 15619. [Google Scholar] [CrossRef]
- Hughes, A.; Mansour, M.; Ward, R.; Kieboom, N.; Allen, S.; Seccombe, D.; Charlton, M.; Prudhomme, C. The Impact of Climate Change on Groundwater Recharge: National-Scale Assessment for the British Mainland. J. Hydrol. 2021, 598, 126336. [Google Scholar] [CrossRef]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-Change–Driven Accelerated Sea-Level Rise Detected in the Altimeter Era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef]
- Esteban, M.; Takagi, H.; Jamero, L.; Chadwick, C.; Avelino, J.E.; Mikami, T.; Fatma, D.; Yamamoto, L.; Thao, N.D.; Onuki, M. Adaptation to Sea Level Rise: Learning from Present Examples of Land Subsidence. Ocean. Coast. Manag. 2020, 189, 104852. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Fasullo, J.; Galloway, D.L. Land Subsidence Contributions to Relative Sea Level Rise at Tide Gauge Galveston Pier 21, Texas. Sci. Rep. 2020, 10, 17905. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, X.; Wang, K.; Ke, X.; Zhang, Y.; Zhao, R.; Bao, Y. GOM20: A Stable Geodetic Reference Frame for Subsidence, Faulting, and Sea-Level Rise Studies along the Coast of the Gulf of Mexico. Remote Sens. 2020, 12, 350. [Google Scholar] [CrossRef]
- Tay, C.; Lindsey, E.O.; Chin, S.T.; McCaughey, J.W.; Bekaert, D.; Nguyen, M.; Hua, H.; Manipon, G.; Karim, M.; Horton, B.P. Sea-Level Rise from Land Subsidence in Major Coastal Cities. Nat. Sustain. 2022, 5, 1049–1057. [Google Scholar] [CrossRef]
- Liu, Y.; Rashvand, M.; Li, J. Preliminary Investigation of Land Subsidence Impacts on Sea Level Change in Baltimore Inner Harbor, Maryland. In Proceedings of the World Environmental and Water Resources Congress 2020, Henderson, Nevada, 17–21 May 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 236–243. [Google Scholar]
- Ng, G.H.C.; McLaughlin, D.; Entekhabi, D.; Scanlon, B.R. Probabilistic Analysis of the Effects of Climate Change on Groundwater Recharge. Water Resour. Res. 2010, 46, 1–18. [Google Scholar] [CrossRef]
- Wood, W.W.; Imes, J.L. Dating of Holocene Ground-Water Recharge in Western Part of Abu Dhabi (United Arab Emirates): Constraints on Global Climate-Change Models. In Developments in Water Science; Alsharhan, A.S., Wood, W.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 50, pp. 379–385. ISBN 0167-5648. [Google Scholar]
- Wu, W.Y.; Lo, M.H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.F.; Ducharne, A.; Yang, Z.L. Divergent Effects of Climate Change on Future Groundwater Availability in Key Mid-Latitude Aquifers. Nat. Commun. 2020, 11, 3710. [Google Scholar] [CrossRef]
- Rajaee, T.; Khani, S.; Ravansalar, M. Artificial Intelligence-Based Single and Hybrid Models for Prediction of Water Quality in Rivers: A Review. Chemom. Intell. Lab. Syst. 2020, 200, 103978. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Batelaan, O.; Fadaee, M.; Hinkelmann, R. Ensemble Machine Learning Paradigms in Hydrology: A Review. J. Hydrol. 2021, 598, 126266. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Torres-Rua, A.F.; McKee, M.; Kustas, W.P.; Nieto, H.; Alsina, M.M.; White, A.; Prueger, J.H.; McKee, L.; Alfieri, J. Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspiration Models. Remote Sens. 2019, 12, 50. [Google Scholar] [CrossRef]
- Majumdar, S.; Smith, R.; Butler, J.J., Jr.; Lakshmi, V. Groundwater Withdrawal Prediction Using Integrated Multitemporal Remote Sensing Data Sets and Machine Learning. Water Resour. Res. 2020, 56, e2020WR028059. [Google Scholar] [CrossRef]
- Golden, J.; O’Malley, D.; Viswanathan, H. Quantum Computing and Preconditioners for Hydrological Linear Systems. Sci. Rep. 2022, 12, 22285. [Google Scholar] [CrossRef]
- O’Malley, D. An Approach to Quantum-Computational Hydrologic Inverse Analysis. Sci. Rep. 2018, 8, 6919. [Google Scholar] [CrossRef]
- Gleick, P.H. Global Freshwater Resources: Soft-Path Solutions for the 21st Century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef]
- Bates, B.; Kundzewicz, Z.; Wu, S. Climate Change and Water; Intergovernmental Panel on Climate Change Secretariat: Geneva, Switzerland, 2008; ISBN 9291691232. [Google Scholar]
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. A Conceptual Framework for Analysing Adaptive Capacity and Multi-Level Learning Processes in Resource Governance Regimes. Glob. Environ. Chang. 2009, 19, 354–365. [Google Scholar] [CrossRef]
- Gerber, J.-D.; Knoepfel, P.; Nahrath, S.; Varone, F. Institutional Resource Regimes: Towards Sustainability through the Combination of Property-Rights Theory and Policy Analysis. Ecol. Econ. 2009, 68, 798–809. [Google Scholar] [CrossRef]
- Tsur, Y. Economic Aspects of Irrigation Water Pricing. Can. Water Resour. J. 2005, 30, 31–46. [Google Scholar] [CrossRef]
- Postel, S.; Richter, B. Rivers for Life: Managing Water for People and Nature; Island Press: Washington, DC, USA, 2012; ISBN 1597267805. [Google Scholar]
S. No. | Country | Variables Used | Major Climate Change Event | Major Impact on Environment | Impact on Groundwater | Model Used | References |
---|---|---|---|---|---|---|---|
1 | Shazand Plain, Iran | Hydraulic head, precipitation infiltration, surface water flow, and subsurface flow. | Rainfall in the region will decrease by 18–45% (2059). It is predicted that the average annual temperature will increase by 16%, from 13.7 to 15.9. | River discharge will decrease by 63–81% by the end of 2059. | Significant reduction of average groundwater level by 15.1 m in 2060. | Groundwater—Integrated hydrological model, MODFLOW-OWHM. Climate model—NorESM. River discharge—HEC-HMS model. | [48] |
2 | Punjab, India | Nitrogen fertiliser usage, land use change, population density, GW nitrate, precipitation, mean temperature, potential evapotranspiration (PET), and aridity index. | Precipitation is predicted to rise by 5% by 2040, while it would decline by 0.6% by 2030. | Groundwater nitrate pollution will increase to 49–50% in 2030 and 65–66% in 2040. | Groundwater contaminants’ prediction—RF model (random forest) Climate model—Global climate models (GCM). | [49] | |
3 | Great Britain (Coltishall, Gatwick, and Paisley) | Precipitation, minimum and maximum temperature, vapour pressure, wind speed, sunshine duration, relative humidity, potential evapotranspiration, and soil moisture. | High greenhouse gas emissions (atmospheric CO2 concentration increases to 525 ppm by the end of the present century) and rise in global temperature by 3.5 °C. | Up to 50% drier summers and 30% wetter winters by the 2080s. | A 40% decrease in the yearly projected groundwater recharge for Gatwick, a 20% decline for Coltishall, and a 7% reduction for Paisley. | Climate model—Global climate models (GCM; UKCIP02 scenario). | [50] |
4 | Palestine | Precipitation, potential evapotranspiration, and land use pattern. | 10% reduction in annual rainfall and 3.0 °C increase in temperature. | - | 14% to 24% reduction in groundwater recharge (636 to 516 mcm/year). | Climate model—GCM. Groundwater flow model—MODFLOW. | [51] |
5 | Oka River basin, European Russia | Surface air temperature, precipitation, air humidity deficit, and surface runoff. | Annual precipitation will increase by almost 10%. Decrease in the annual runoff will amount to 25–30% by the middle of the century, and 18–22% at the end. | - | Groundwater flow will decrease by 12–17% by 2050. | Climate models (GFDL-ESM2M, HadGEM2-ES, IPSLCM5A-LR, and MIROC5). | [52] |
6 | Vientiane basin, Laos | Infiltration, evaporation, runoff, rainfall patterns, temperatures, land cover, land use, soil type, and ground surface slope. | Annual rainfall higher than 1438 mm by about 230, 250, and 700 mm/year, respectively, from 2021 to 2050. | Freshwater areas (TDS < 500 mg/L) will typically see an increase in TDS, while water with TDS between 500 and 1500 mg/L would generally see a reduction. | Annual groundwater recharge would be increased by 22.7–47.5% (334 to 401 MCM/year). | Models for groundwater recharging (HELP3) and groundwater flow (MODFLOW), including salt transport (MT3D), are available. | [52,53] |
7 | Mosian plain, Iran | Rainfall, minimum and maximum temperatures, air temperature, radiation, GW recharge, hydraulic parameters, well initial heads, and stream flows. | Annual precipitation will decrease by 3% during 2015–2030. | Over the previous 24 years, the research area’s groundwater level has declined at a rate of 0.48 m/year. In the next 16 years, the annual depletion of groundwater is expected to reach 0.75 metres. | Climate model—HadCM3. Groundwater flow model—MODFLOW. | [54] | |
8 | India (Haryana, Utter Pradesh, Rajasthan, and Delhi) | Water flux, potential evapotranspiration, precipitation, temperature, wind speed, sunshine hours, relative humidity, and hydraulic conductivity. | Annual mean surface air temperature would rise by 1.7–2 °C in 2030. | Groundwater recharge would decrease by 2030 up to 0.09 m to 0.21 m compared to the reference year 2005. | HYDRUS and PMWIN models for vadose zone moisture movement and MODFLOW. | [55] | |
9 | Arusha, Tanzania | Evapotranspiration, surface runoff, groundwater recharge, groundwater abstraction, and return flow | Yearly annual temperatures estimated to increase by between 0.8 °C and 1.8 °C by 2050. Annual precipitation will decrease by 10–11%. | Increased evapotranspiration. | Groundwater recharge may fall 30–44% by 2050, causing groundwater levels to drop by at most 75 m. | Parameter ESTimation (PEST) package of MODFLOW. | [56] |
10 | Benin, West Africa | The characteristics of an aquifer include its type, hydraulic conductivity, height above mean sea level, distances from the shore, impact of seawater intrusion, and thickness within a saturated aquifer. | Sea level rise and over-exploitation. | Seawater intrusion into aquifer. | Due to the drop in groundwater levels during that period, seawater intrusion is more likely to occur in February and less likely in July. | GALDIT | [57] |
11 | Birbhum District, West Bengal, India | Vadose zone impact, topography, depth to water level, net recharge, aquifer and soil medium, and hydraulic conductivity. | Industrialisation, urbanisation, intensive agriculture. | Groundwater contamination. | Fluoride (14.31), iron (5.8), sulphate (360.55), phosphate (1.86), and EC (2490). | DRASTIC | [58] |
12 | PT. X in Balangan, South Kalimantan, Borneo | The presence of groundwater, the kind of aquifer, its overall lithology, and its depth. | Mining activities. | Groundwater contamination. | Moderate (0.32–0.36) groundwater vulnerability. | GOD | [59] |
13 | Campania Region, Southern Italy | Hydraulic resistance of an aquifer, hydraulic conductivity. | Pyroclastic, alluvial, and marine deposits. | Groundwater vulnerability. | Very high (<−3.8) and high (−3.8 to −1) vulnerability index. | Modified AVI | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davamani, V.; John, J.E.; Poornachandhra, C.; Gopalakrishnan, B.; Arulmani, S.; Parameswari, E.; Santhosh, A.; Srinivasulu, A.; Lal, A.; Naidu, R. A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models. Atmosphere 2024, 15, 122. https://doi.org/10.3390/atmos15010122
Davamani V, John JE, Poornachandhra C, Gopalakrishnan B, Arulmani S, Parameswari E, Santhosh A, Srinivasulu A, Lal A, Naidu R. A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models. Atmosphere. 2024; 15(1):122. https://doi.org/10.3390/atmos15010122
Chicago/Turabian StyleDavamani, Veeraswamy, Joseph Ezra John, Chidamparam Poornachandhra, Boopathi Gopalakrishnan, Subramanian Arulmani, Ettiyagounder Parameswari, Anandhi Santhosh, Asadi Srinivasulu, Alvin Lal, and Ravi Naidu. 2024. "A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models" Atmosphere 15, no. 1: 122. https://doi.org/10.3390/atmos15010122
APA StyleDavamani, V., John, J. E., Poornachandhra, C., Gopalakrishnan, B., Arulmani, S., Parameswari, E., Santhosh, A., Srinivasulu, A., Lal, A., & Naidu, R. (2024). A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models. Atmosphere, 15(1), 122. https://doi.org/10.3390/atmos15010122