FY-3E Satellite Plasma Analyzer
Abstract
:1. Introduction
2. Scientific and Application Objectives of the Instrument
3. Design of the FY-3E Satellite Plasma Analyzer
3.1. Sensor Design
3.2. Electronics Design
4. Work Patterns and Data Products
5. Ground-Based Test and Calibration
- (1)
- number of detection channels;
- (2)
- electrostatic analyzer factor and detectable energy range;
- (3)
- detectable field of view range at azimuth angles;
- (4)
- detectable field of view range at elevation angles;
- (5)
- sampling rate of the instrument;
- (6)
- ground-based calibration experiment accuracy.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eyre, J. The WMO Vision for Global Observing Systems in 2025: To What Extent Will It Be Met by Space Agencies’ Plans; WMO: Geneva, Switzerland, 2015; Available online: https://www.ecmwf.int/sites/default/files/elibrary/2015/9328-wmo-vision-global-observing-systems-2025-what-extent-will-it-be-met-space-agencies-plans.pdf (accessed on 7 November 2023).
- Yang, J.; Zhang, P.; Lu, N.; Yang, Z.; Shi, J.; Dong, C. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. Int. J. Digit. Earth 2012, 5, 251–265. [Google Scholar] [CrossRef]
- Cao, J.B.; Wang, X.Y.; Zhou, G.C.; Chen, T. Plasma sheath of moving spacecraft in magnetized plasma of low earth orbit. Chin. Ournal Geophys. 2000, 43, 491–495. [Google Scholar] [CrossRef]
- Greenspan, M.E.; Anderson, P.B.; Pelagatti, M. Characteristics of the Thermal Plasma Monitor (SSIES) for the Defense Meteorological Satellite Program (DMSP) Spacecraft S8 through S10; Report AFGL-TR-86-0227; Air Force Geophysics Lab, Hanscom Air Force Base: Bedford, MA, USA, 1986. [Google Scholar]
- McFadden, J.P.; Carlson, C.W.; Larson, D.; Ludlam, M.; Abiad, R.; Elliott, B.; Turin, P.; Marckwordt, M.; Angelopoulos, V. The THEMIS ESA Plasma Instrument and In-flight Calibration. Space Sci. Rev. 2008, 141, 277–302. [Google Scholar] [CrossRef]
- Evans, D.S.; Greer, M.S. Polar Orbiting Environmental Satellite Space Experiment Monitor-2: Instrument Description and Archive Data Documentation, NOAA Technical Memorandum, Version 1.3; NOAA Environmental Center: Boulder, CO, USA, 2004. [Google Scholar]
- Anderson, P.C. Characteristics of spacecraft charging in low Earth orbit. Geophys. Res. 2012, 117, A07308. [Google Scholar] [CrossRef]
- Pollock, C.; Moore, T.; Jacques, A.; Burch, J.; Gliese, U.; Saito, Y.; Omoto, T.; Avanov, L.; Barrie, A.; Coffey, V.; et al. Fast plasma investigation for magnetospheric Multiscale. Space Sci. Rev. 2016, 199, 331–406. [Google Scholar] [CrossRef]
- McComas, D.J.; Alexander, N.; Allegrini, F.; Bagenal, F.; Beebe, C.; Clark, G.; Crary, F.; Desai, M.I.; De Los Santos, A.; Demkee, D.; et al. The ovian Auroral Distributions Experiment (ADE) on the uno Mission to upiter. Space Sci. Rev. 2017, 213, 547–643. [Google Scholar] [CrossRef]
- Carlson, C.W.; Curtis, D.W.; Paschmann, G.; Michel, W. An instrument for rapidly measuring plasma distribution functions with high resolution. Adv. Space Res. 1983, 2, 67–70. [Google Scholar] [CrossRef]
- Young, D.T.; Bame, S.J.; Thomsen, M.F.; Martin, R.H.; Burch, J.L.; Marshall, J.A.; Reinhard, B. 2-Pi-radian field-of-view toroidal lectrostatic analyzer. Rev. Sci. Instrum. 1988, 59, 743–751. [Google Scholar] [CrossRef]
- Moldosanov, K.A.; Kashirin, V.A.; Skrynnikov, A.M.; Anisimova, I.A.; Anisimov, V.P.; Kobtsov, G.A. Black coatings for stray light and thermal control applications. Proc. SPIE—Int. Soc. Opt. Eng. 2001, 4458, 87–94. [Google Scholar] [CrossRef]
- Goueffon, Y.; Arurault, L.; Mabru, C.; Tonon, C.; Guigue, P. Black anodic coatings for space applications: Study of the process parameters, characteristics and mechanical properties. J. Mater. Process. Technol. 2009, 209, 5145–5151. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, A.; Tian, Z.; Zheng, X.; Wang, W.; Liu, B.; Wurz, P.; Piazza, D.; Etter, A.; Su, B.; et al. Mars Ion and Neutral Particle Analyzer(MINPA) for Chinese Mars Exploration Mission(Tianwen-1): Design and ground calibration. Earth Planet. Phys. 2020, 4, 333–344. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Wang, J.; Huang, C.; Li, J.; Zhang, A.; Kong, L.; Du, D.; Yang, Y.; Zhang, P.; et al. Plasma Analyzer for the Chinese FY-3E Satellite: In-Orbit Performance and Ground Calibration. Atmosphere 2023, 14, 1665. [Google Scholar] [CrossRef]
Title 1 | 2014 | 2025 |
---|---|---|
Early morning (LECT~1730) | DMSP F-16, -17, -19 | DMSP F20 FY-3E, 3G |
Morning (LECT~0930) | Metop-A, -B DMSP-18 FY-3C Meteor-M N1, -N2 | Metop-C Metop-SG Meteor-M N2 |
Afternoon (LECT~1330) | NOAA-15, -18, -19 Suomi-NPP FY-3B | JPSS-1, -2 FY-3F |
(LECT~1530) | Meteor-M N2, -MP |
Parameters Name | Value |
---|---|
Outer Envelope Size | 296 mm × 217 mm × 221 mm |
Total Mass | 4.1 kg |
Power Consumption | 8 Watts |
No. | Name | Design Output (V) | In-Orbit Range (V) | Source |
---|---|---|---|---|
1. | Electron main high voltage | 0~4100 | 3850 | Electron main high voltage |
2. | Electron deflection high voltage 1 | 0~4100 | 0~3800 | |
3. | Electron deflection high voltage 2 | 0~4100 | 0~3800 | |
4. | Electron microchannel plate high voltage | 0~2500 | 0~2200 | |
5. | Electron electrostatic analyzer high voltage | 0~4100 | 0~3800 | |
6. | Ion main high voltage | −4100~0 | −3850 | Ion main high voltage |
7. | Ion deflection high voltage 1 | −4100~0 | −3800~0 | |
8. | Ion deflection high voltage 2 | −4100~0 | −3800~0 | |
9. | Electron microchannel plate high voltage | −2500~0 | −2300~0 | |
10. | Ion electrostatic analyzer high voltage | −4100~0 | −3800~0 |
Parameter | Scope |
---|---|
Electron beam energy | 100 eV~30 keV |
Ion beam energy | 100 eV~30 keV |
Beam source energy spread: | better than 10.0%@energ > 200 eV better than 20 eV@100 ev < energy < 200 eV |
Beam spot diameter: | >70 mm |
Ion components | H+, He+, N+, O+, Ar+, etc. |
Beam source flux | 103~1010 cm−2 s−1 |
Vacuum | better than 5 × 10−5 Pa |
Vacuum turntable | the rotation covers 180°× ± 45°, the translation repositioning accuracy is better than 0.1 mm, and the rotation repositioning accuracy is better than 0.1°. |
Item | Result |
---|---|
Energy range | Ion: 24.3 eV~32.4 keV Electron: 23.7 eV~31.6 keV |
) | Ion: 0.180@10 keV Ar+ Electron: 0.171@10 keV Ele |
Geometric factor | |
Observation channel | 16 × 6 |
Detection accuracy | Azimuth: ≤0.44% |
Ion energy: ≤3.53% | |
Ion elevation angle: ≤10.00% | |
Electron energy: ≤5.31% | |
16 × 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Zhang, A.; Zheng, X.; Kong, L.; Su, B.; Liu, B.; Ding, J.; Wang, W.; Liu, C.; Lv, Y.; et al. FY-3E Satellite Plasma Analyzer. Atmosphere 2024, 15, 14. https://doi.org/10.3390/atmos15010014
Tian Z, Zhang A, Zheng X, Kong L, Su B, Liu B, Ding J, Wang W, Liu C, Lv Y, et al. FY-3E Satellite Plasma Analyzer. Atmosphere. 2024; 15(1):14. https://doi.org/10.3390/atmos15010014
Chicago/Turabian StyleTian, Zheng, Aibing Zhang, Xiangzhi Zheng, Linggao Kong, Bin Su, Bin Liu, Jianjing Ding, Wenjing Wang, Chao Liu, Yulong Lv, and et al. 2024. "FY-3E Satellite Plasma Analyzer" Atmosphere 15, no. 1: 14. https://doi.org/10.3390/atmos15010014
APA StyleTian, Z., Zhang, A., Zheng, X., Kong, L., Su, B., Liu, B., Ding, J., Wang, W., Liu, C., Lv, Y., Gao, J., & Ma, L. (2024). FY-3E Satellite Plasma Analyzer. Atmosphere, 15(1), 14. https://doi.org/10.3390/atmos15010014