Effect of Heating Emissions on the Fractal Size Distribution of Atmospheric Particle Concentrations
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Distribution of Pollutant Concentration under Adjustment of Heating Energy Consumption Types
3.2. Distribution of Particulate Matter Concentrations during Typical Months under the Effect of the Adjustment of Heating Energy Consumption Types
3.3. Distribution of Fractal Dimensions of Typical Monthly Particles
4. Conclusions
- After adjusting the heating energy consumption types, except for O3, the other five pollutants showed the highest concentrations in January and December and the lowest concentrations in November and March. O3 showed the highest concentration in March and February and the lowest concentration in December and November.
- The average concentrations of PM2.5 before and after adjusting the heating energy consumption types decreased by 26.4 μg/m3. The average concentrations of PM10 decreased by 31.8% μg/m3. The average concentrations of SO2 decreased by 7.5 μg/m3. The average concentrations of NO2 increased by 1.30 μg/m3. The average concentrations of CO decreased by 0.40 mg/m3. The average concentrations of O3 increased by 3.8 μg/m3. Adjusting the heating energy consumption types has a significant impact on the concentration of particulate matter.
- The different particle sizes showed a downward trend. The particles ranging from 0.265 to 0.475 μm decreased the most, with a decrease of 8.80%. The heating period in Xi’an mainly involves particles ranging from 0 to 0.475 μm.
- The fractal dimensions of atmospheric particulate matter before and after adjusting the heating energy consumption types are 4.809 and 3.397. After adjusting the heating energy consumption types, the fractal dimension decreased by 1.412. This indicates that the proportion of fine particles decreases significantly after adjusting heating energy consumption types. At this time, the proportions of particles less than 1.0 μm, 2.0 μm, and 2.5 μm decreased by 1.467%, 0.604%, and 0.424%, respectively. This provides new methods and reference value for the distribution and effective control of atmospheric particulate matter under the effect of adjusting heating energy consumption types. In future research, the distribution of particle sizes in the environment can be determined by evaluating the size of the fractal dimension.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeon, J.; Chen, Y.; Kim, H. Influences of meteorology on emission sources and physicochemical properties of particulate matter in Seoul, Korea during the heating period. Atmos. Environ. 2023, 303, 119733. [Google Scholar] [CrossRef]
- Pang, N.; Gao, J.; Che, F.; Ma, T.; Liu, S.; Yang, Y.; Zhao, P.; Yuan, J.; Liu, J.; Xu, Z.; et al. Cause of PM2.5 pollution during the 2016–2017 heating season in Beijing, Tianjin, and Langfang, China. J. Environ. Sci. 2020, 95, 201–209. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Xu, X.; Li, X.; He, P.; Qiao, Y.; Chen, Y. The diminishing effects of winter heating on air quality in northern China. J. Environ. Manag. 2023, 325, 116536. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.; Geng, G.; Jiang, K.; Cheng, J.; Zheng, Y.; Hong, C.; Yan, L.; Zhang, Y.; Chen, X.; Bo, Y.; et al. Energy and emission pathways towards PM2.5 air quality attainment in the Beijing-Tianjin-Hebei region by 2030. Sci. Total Environ. 2019, 692, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Järvi, L.; Kurppa, M.; Kuuluvainen, H.; Rönkkö, T.; Karttunen, S.; Balling, A.; Timonen, H.; Niemi, J.V.; Pirjola, L. Determinants of spatial variability of air pollutant concentrations in a street canyon network measured using a mobile laboratory and a drone. Sci. Total Environ. 2023, 856, 158974. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhang, F.; Fang, D.; Wang, Q.; Liu, M. Spatial characteristics of change trends of air pollutants in Chinese urban areas during 2016–2020: The impact of air pollution controls and the COVID-19 pandemic. Atmos. Res. 2022, 283, 106539. [Google Scholar] [CrossRef]
- GB3095-2012; Ambient Air Quality Standards. China Environmental Science Press: Beijing, China, 2012.
- Zhou, F.; Yang, J.; Wen, G.; Ma, Y.; Pan, H.; Geng, H.; Cao, J.; Zhao, M.; Xu, C. Estimating spatio-temporal variability of aerosol pollution in Yunnan Province, China. Atmos. Pollut. Res. 2022, 13, 101450. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, A.; Arora, T.; Singh, S.; Singh, R. Critical review on emerging health effects associated with the indoor air quality and its sustainable management. Sci. Total Environ. 2023, 872, 162163. [Google Scholar] [CrossRef]
- Han, G.; Liu, M.; Li, X.; Zhang, Q. Sources and geochemical behaviors of rare earth elements in suspended particulate matter in a wet-dry tropical river. Environ. Res. 2023, 218, 115044. [Google Scholar] [CrossRef]
- Wang, J.; Li, T.; Li, Z.; Fang, C. Study on the Spatial and Temporal Distribution Characteristics and Influencing Factors of Particulate Matter Pollution in Coal Production Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 3228. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, R.P. The Relationship between Ambient Fine Particulate Matter (PM2.5) Pollution and Depression: An Analysis of Data from 185 Countries. Atmosphere 2023, 14, 597. [Google Scholar] [CrossRef]
- Mi, K.; Zhuang, R.; Zhang, Z.; Gao, J.; Pei, Q. Spatiotemporal characteristics of PM2.5 and its associated gas pollutants, a case in China. Sustain. Cities Soc. 2018, 45, 287–295. [Google Scholar] [CrossRef]
- Desservettaz, M.; Pikridas, M.; Stavroulas, I.; Bougiatioti, A.; Liakakou, E.; Hatzianastassiou, N.; Sciare, J.; Mihalopoulos, N.; Bourtsoukidis, E. Emission of volatile organic compounds from residential biomass burning and their rapid chemical trans-formations. Sci. Total Environ. 2023, 903, 166592. [Google Scholar] [CrossRef] [PubMed]
- Chicherin, S.; Anvari-Moghaddam, A. Adjusting heat demands using the operational data of district heating systems. Energy 2021, 235, 121368. [Google Scholar] [CrossRef]
- Mazo, J.; Delgado, M.; Marin, J.M.; Zalba, B. Modeling a radiant floor system with Phase Change Material (PCM) integrated into a building simulation tool: Analysis of a case study of a floor heating system coupled to a heat pump. Energy Build. 2012, 47, 458–466. [Google Scholar] [CrossRef]
- Rehman, H.U.; Hirvonen, J.; Sirén, K. Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system. Appl. Energy 2018, 229, 1072–1094. [Google Scholar] [CrossRef]
- Mohammad, N.; Mohamad Ishak, W.W.; Mustapa, S.I.; Ayodele, B.V. Natural gas as a key alternative energy source in sus-tainable renewable energy transition: A mini review. Front. Energy Res. 2021, 9, 625023. [Google Scholar] [CrossRef]
- Liu, F.; Yu, T.; Leng, W.; Zhang, X. Distribution and Fractal Characteristics of Outdoor Particles in High-Rise Buildings Based on Fractal Theory. Fractal Fract. 2023, 7, 669. [Google Scholar] [CrossRef]
- Davies, C. Particles in the atmosphere: A review. J. Aerosol Sci. 1987, 18, 469–477. [Google Scholar] [CrossRef]
- Goudeli, E.; Eggersdorfer, M.L.; Pratsinis, S.E. Coagulation–Agglomeration of Fractal-like Particles: Structure and Self-Preserving Size Distribution. Langmuir 2015, 31, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, Y.; Adams, M.D.; Liu, M.; Li, B.; Shi, T.; Li, C. Natural and human factors influencing urban particulate matter concentrations in central heating areas with long-term wearable monitoring devices. Environ. Res. 2022, 215, 114393. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- Mandelbrot, B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Arasan, S.; Akbulut, S.; Hasiloglu, A.S. The relationship between the fractal dimension and shape properties of particles. KSCE J. Civ. Eng. 2011, 15, 1219–1225. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Yu, H. Numerical Model of Filtration Efficiency Based on Fractal Characteristics of Particulate Matter and Particle Filter. Atmosphere 2023, 14, 1689. [Google Scholar] [CrossRef]
- Guzzo, P.L.; Ţălu, Ş.; Kulesza, S.; Bramowicz, M. A Fractal Description of Finely Ground Particles of Natural Quartz Using Particle Size and Image Analyses. JOM 2023, 75, 1333–1344. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, H.; Li, K.P.; Nie, X.X.; Fan, Y.S.; Wang, H.; Ma, J.Y. Comparison of the Application of Three Methods for the Determination of Outdoor PM2.5 Design Concentrations for Fresh Air Filtration Systems in China. Int. J. Environ. Res. Public Health 2022, 19, 16537. [Google Scholar] [CrossRef]
- Zhang, H.L.; Hao, Q.L.; Li, G.L. Analysis of Pollution Concentration of Particulate Matter after Adjusting Heating Measures in Xi’an. Build. Energy Environ. 2020, 39, 54–57. (In Chinese) [Google Scholar]
- HJ633-2012; Technical Regulation on Ambient Air Quality Index (On Trial). China Environmental Science Press: Beijing, China, 2012.
- HJ663-2013; Technical Regulation for Ambient Air Quality Assessment (On Trial). China Environmental Science Press: Beijing, China, 2013.
- Miao, L.C.; Qiu, Y.; Liu, S.Y. Fractal feature of coal mine waste discrete material. J. Southeast Univ. Nat. Sci. Ed. 2003, 33, 79–81. (In Chinese) [Google Scholar]
- Jin, Y.; Wu, Y.; Li, H.; Zhao, M.; Pan, J. Definition of fractal topography to essential understanding of scale-invariance. Sci. Rep. 2017, 7, srep46672. [Google Scholar] [CrossRef]
- Shao, L.Y.; Yang, S.S.; Zhao, H.Y.; Li, H. Physicochemistry and Toxicology of Indoor Airborne Inhalable Particles; China Meteorological Press: Beijing, China, 2012; pp. 180–203. [Google Scholar]
- Zhu, C.L.; Li, X.Q.; Li, F.Y. Analysis on variation trends and related features of concentration of main air pollution in Xi’an. Environ. Eng. 2017, 35, 104–109. (In Chinese) [Google Scholar]
- Wang, X.; Xu, J.; Ling, P.; An, X.; Han, H.; Chen, Y.; Jiang, L.; Wang, Y.; Su, S.; Hu, S.; et al. A study on the release characteristics and formation mechanism of SO2 during co-combustion of sewage sludge and coal slime. Fuel 2023, 333, 126511. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, F.; Peng, Z.; Pei, Y. The NOx emission characteristics of gasoline vehicles during transient driving cycles. Transp. Res. Part D Transp. Environ. 2022, 109, 103386. [Google Scholar] [CrossRef]
- Liu, T.; Sun, J.; Liu, B.H.; Li, M.; Deng, Y.B.; Jing, W.L.; Yang, J. Factors Influencing O3 Concentration in Traffic and Urban Environments: A Case Study of Guangzhou City. Int. J. Environ. Res. Public Health 2022, 19, 12961. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.; Acheampong, A.O. Reducing carbon emissions: The role of renewable energy and democracy. J. Clean. Prod. 2019, 240, 118245. [Google Scholar] [CrossRef]
- Neale, P.J.; Williamson, C.E.; Banaszak, A.T.; Häder, D.-P.; Hylander, S.; Ossola, R.; Rose, K.C.; Wängberg, S.; Zepp, R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem. Photobiol. Sci. 2023, 22, 1093–1127. [Google Scholar] [CrossRef]
- Zhu, W.-K.; Wang, C.-Y.; Wang, L.-S.; Wu, X.-H.; Yue, Q. Analysis of energy-saving and environmental benefits from power structure adjustment in China: A comparative study from 2020 to 2060. Sustain. Prod. Consum. 2022, 31, 750–761. [Google Scholar] [CrossRef]
- Xu, Y.L.; Xue, W.B.; Lei, Y.; Zhao, Y.; Cheng, S.Y.; Ren, Z.H.; Huang, Q. Impact of meteorological conditions on PM2.5 pollution in China during winter. Atmosphere 2018, 9, 429. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, J.; Wang, J.; Shi, H.; Guo, J.; Fan, Y.; Nie, X.; Guo, T.; Luo, X. Modifying the Fiber Structure and Filtration Performance of Polyester Materials Based on Two Different Preparation Methods. Langmuir 2023, 39, 3502–3511. [Google Scholar] [CrossRef]
- Harni, S.D.; Saarikoski, S.; Kuula, J.; Helin, A.; Aurela, M.; Niemi, J.V.; Kousa, A.; Rönkkö, T.; Timonen, H. Effects of emission sources on the particle number size distribution of ambient air in the residential area. Atmos. Environ. 2023, 293, 119419. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W. Size-segregated urban particulate matter: Mass closure, chemical composition, and primary and secondary matter content. Air Qual. Atmos. Health 2015, 9, 533–550. [Google Scholar] [CrossRef] [PubMed]
- Bu, S.B.; Wang, Y.L.; Wang, H.Y.; Wang, F.; Tan, Y.F. Predicting spatio-temporal distribution of indoor multi-phase phthalates under the influence of particulate matter. Built Environ. 2022, 221, 109329. [Google Scholar] [CrossRef]
- Lu, S.; Tang, H.M.; Zhang, Y.Q.; Gong, W.P.; Wang, L.Q. Effects of the particle-size distribution on the micro and macro be-havior of soils: Fractal dimension as an indicator of the spatial variability of a slip zone in a landslide. Bull. Eng. Geol. Environ. 2018, 77, 665–677. [Google Scholar] [CrossRef]
- Valle, F.; Brucale, M.; Chiodini, S.; Bystrenova, E.; Albonetti, C. Nanoscale morphological analysis of soft matter aggregates with fractal dimension ranging from 1 to 3. Micron 2017, 100, 60–72. [Google Scholar] [CrossRef]
- Yang, S.S.; Shao, L.Y.; Shen, R.R.; Li, W.J.; Zhang, G.L.; Tan, M.G. Fractal dimensions of size distribution of PM10 in Shanghai. China Environ. Sci. 2007, 27, 594–598. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norbu, N.; Sheng, X.; Liu, Q.; Han, H.; Zhang, X. Effect of Heating Emissions on the Fractal Size Distribution of Atmospheric Particle Concentrations. Atmosphere 2024, 15, 95. https://doi.org/10.3390/atmos15010095
Norbu N, Sheng X, Liu Q, Han H, Zhang X. Effect of Heating Emissions on the Fractal Size Distribution of Atmospheric Particle Concentrations. Atmosphere. 2024; 15(1):95. https://doi.org/10.3390/atmos15010095
Chicago/Turabian StyleNorbu, Namkha, Xiaolei Sheng, Qiang Liu, Haihui Han, and Xin Zhang. 2024. "Effect of Heating Emissions on the Fractal Size Distribution of Atmospheric Particle Concentrations" Atmosphere 15, no. 1: 95. https://doi.org/10.3390/atmos15010095
APA StyleNorbu, N., Sheng, X., Liu, Q., Han, H., & Zhang, X. (2024). Effect of Heating Emissions on the Fractal Size Distribution of Atmospheric Particle Concentrations. Atmosphere, 15(1), 95. https://doi.org/10.3390/atmos15010095